首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   9篇
  国内免费   3篇
工业技术   148篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   18篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   4篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   4篇
  1983年   1篇
排序方式: 共有148条查询结果,搜索用时 531 毫秒
1.
The knowledge of turbo code's minimum Hamming distance (dmin) and its corresponding codeword multiplicity (Amin) is of a great importance because the error correction capability of a code is strongly tied to the values of dmin and Amin. Unfortunately, the computational complexity associated with the search for dmin and Amin can be very high, especially for a turbo code that has high dmin value. This paper introduces some useful properties of turbo codes that use structured interleavers together with circular encoding. These properties allow for a significant reduction of search space and thus reduce significantly the computational complexity associated with the determination of dmin and Amin values. © 2014 The Authors. International Journal of Communication Systems published by John Wiley & Sons, Ltd.  相似文献   
2.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
3.
4.
The non-uniformity of the air temperatures and the slow flow rate at the plane collector exit constitute the main cause of the limitations of the solar drying systems. In order to obtain an uniform and a variable flow rate for different uses, a hot air generator using concentrated solar radiation is proposed. To improve the thermal efficiency of the generator, a study of the influence of different shape parameters is realized. The generator is simulated in the laboratory while investigating the flow induced by a circular disc heated uniformly by Joule effect at constant temperature. This disc is placed at the entrance of an open ended vertical cylinder of a larger diameter. Thermal radiation emitted by the hot disc heats the cylinder wall. The heating of the fluid at the cylinder-inlet generates a thermosiphon flow around the one created by the hot disc. The comparison of the velocity and the temperature profiles of the resulting flow permits to determine the influence of the cylinder height, the vertical source-cylinder spacing and the radius ratio, on the resulting flow at the system exit. Thus, a judicious choice of the shape parameters entails an improvement of the flow rate as well as the thermal flux absorbed by the air and a good homogenization of the air temperature at the generator exit.  相似文献   
5.
6.
Given an undirected, vertex-weighted graph, the goal of the minimum weight vertex cover problem is to find a subset of the vertices of the graph such that the subset is a vertex cover and the sum of the weights of its vertices is minimal. This problem is known to be NP-hard and no efficient algorithm is known to solve it to optimality. Therefore, most existing techniques are based on heuristics for providing approximate solutions in a reasonable computation time.Population-based search approaches have shown to be effective for solving a multitude of combinatorial optimization problems. Their advantage can be identified as their ability to find areas of the space containing high quality solutions. This paper proposes a simple and efficient population-based iterated greedy algorithm for tackling the minimum weight vertex cover problem. At each iteration, a population of solutions is established and refined using a fast randomized iterated greedy heuristic based on successive phases of destruction and reconstruction. An extensive experimental evaluation on a commonly used set of benchmark instances shows that our algorithm outperforms current state-of-the-art approaches.  相似文献   
7.
Wireless Personal Communications - This paper presents an analytical investigation on the effect of nonlinear high-power amplifiers on the physical layer security of multiple-input-multiple-output...  相似文献   
8.
The asymmetry of halloysite surface chemistry was used to perform a selective modification of its inner surface via grafting of a synthesized styrene/(methacryloyloxy)methyl phosphonic acid copolymer. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and pyrolysis gas chromatography/mass spectrometry were used to evidence and quantify the grafting. Then, raw and hybrid nanoparticles were incorporated in polystyrene (PS)/polyamide‐11 (PA11) blends (80/20 and 60/40 wt%). Scanning electron micrographs showed differences in localization of the halloysite nanotubes (HNTs), since raw halloysite is concentrated in the PA11 phase while modified halloysite is also located at the PS/PA11 interface, leading to a better interfacial adhesion between PS and PA11. An inhibiting effect of modified halloysite on PA11 coalescence was evidenced by measuring the particle size distribution of the extracted nodules. Moreover, the presence of modified halloysite at the interface shows an improvement in terms of thermal stability as observed by TGA, but with no significant effects on PA11 crystallization behaviour as shown by differential scanning calorimetry results. Rheological measurements were carried out to study the influence of the surface modification of halloysite on the blend morphology. A gel‐like behaviour was observed for the (60/40 wt%) HNTs reinforced composition that was enhanced in the case of 10% functionalized halloysite. © 2016 Society of Chemical Industry  相似文献   
9.
A pilot plant of biomass pyrolysis using pyrolysis products as fuel has been tested and shown to improve energy balance of the process and to be environmentally friendly by avoiding rejection of pyrolysis pollutants fumes into the atmosphere. The high number of parameters involved in a pyrolysis process makes it difficult to specify an optimum procedure for charcoal yield and pyrolysis cycle durability. So the knowledge of the essential parameters which govern the kinetics mechanisms of the biomass thermal decomposition and the combustion of pyrolysis gases is very useful to understand the operating cycle of the plant. In the present study a thermochemical model is developed in order to simulate and control the operating cycle of the system. The effect of the inlet molar air flow rate on the temporal evolution of biomass mass loss rate and temperatures in the different active zones of the pilot plant as well as the determination of the critical inlet molar air flow rate for which accidental runaway of combustion reactions occurs are presented. To avoid this accidental phenomenon a Proportional-Integral-Derived (PID) anticipated regulation is used in order to control temperatures evolution in the different zones of the device and avoid the runaway of combustion reactions.  相似文献   
10.
Under cyclic loading, the plasticized zone becomes complicated; it contains in particular a second plasticized zone, resulting from the local compression which occurs at the time of the closing of the crack to each cycle. The two plastic zones, monotonous (rm) and cyclic (rc), are proportional to (Kmax/Re)2 et (ΔK/Re)2, respectively. The objective of this work is to study the evolution of the fatigue crack grown rate (FCGR) and the influence of the plastic zone size (rc), which represents the seat of the residual stresses, on this evolution in the case of 12NC6 steel. Generally, the plastic zone size increases with the crack advance. The FCGR can be correlated with the energy absorptive in these plastic zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号