首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   39篇
  国内免费   3篇
工业技术   335篇
  2024年   1篇
  2023年   14篇
  2022年   6篇
  2021年   18篇
  2020年   21篇
  2019年   14篇
  2018年   18篇
  2017年   14篇
  2016年   17篇
  2015年   5篇
  2014年   21篇
  2013年   24篇
  2012年   20篇
  2011年   28篇
  2010年   13篇
  2009年   19篇
  2008年   17篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
1.

For a supercapacitor electrode, carbon-based materials have received great attention for their high surface area and stability. In this work, sustainable and cost-effective synthesis of boron-doped activated biomass-derived carbon from the stems of Prosopis juliflora has been reported for supercapacitor applications. The activation by KOH creates pores and boron induces p-type doping in the carbon matrix. The material gave a higher specific capacitance of 307.14 F/g at a current density of 0.5 A/g. The symmetric supercapacitor device delivered 156.29 F/g of specific capacitance with 98.1% of energy efficiency. The observed energy and power densities were 7.81 Wh/Kg and 150 W/Kg, respectively. The device was further studied with stability test for 1000 charge/discharge cycles and showed 98.6% of capacitance retention and 97.9% of coulombic efficiency.

  相似文献   
2.
3.
4.
Synthesis of WC–Co nanocomposites generally involves gas-phase carburization. A novel approach in which a polymer precursor such as polyacrylonitrile serves as an in situ carbon source has been developed. The WC–Co nanocomposites formed are characterized by X-ray powder diffraction and electron microscopy. Nearly phase pure WC–Co nanocomposites with a particle size of 50–80 nm have been obtained. The phase purity of the products is strongly influenced by the synthesis and processing conditions such as the firing temperature, time, and atmosphere.  相似文献   
5.
Inorganic/organic composite polymer electrolytes (CPEs) with good flexibility and electrode contact have been pursued for solid−state sodium-metal batteries. However, the application of CPEs for high energy density solid−state sodium-metal batteries is still limited by the low Na+ conductivity, large thickness, and low ion transference number. Herein, an ultra-thin single-particle-layer (UTSPL) composite polymer electrolyte membrane with a thickness of ≈20 µm straddled by a sodium beta−alumina ceramic electrolyte (SBACE) is presented. A ceramic Na+-ion electrolyte that bridges or percolates across an ultra-thin and flexible polymer membrane provides: 1) the strength and flexibility from the polymer membrane, 2) excellent electrolyte/electrode interfacial contact, and 3) a percolation path for Na+-ion transfer. Owing to this novel design, the obtained UTSPL-35SBACE membrane exhibits a high Na+-ion conductivity of 0.19 mS cm−1 and a transference number of 0.91 at room temperature, contributing to long−term cycling stability of symmetric sodium cells with a small overpotential. The assembled quasi-solid-state cell with the as−prepared UTSPL-35SBACE membrane displays superior cycling performance with a discharge capacity of 105 mAh g−1 at 0.5 °C rate after 100 cycles and excellent rate performance (82 mAh g−1 at 5 °C rate) at room temperature with the potassium manganese hexacyanoferrate (KMHCF)@CNTs/CNFs cathode, where KMHCF refers to potassium manganese hexacyanoferrate.  相似文献   
6.
Improved thin‐film microbatteries are needed to provide appropriate energy‐storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio‐frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy‐density lithium‐ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost‐competitiveness. Here, inkjet‐printed lithium–sulfur (Li–S) cathodes for integrated nanomanufacturing are reported. Single‐wall carbon nanotubes infused with electronically conductive straight‐chain sulfur (S@SWNT) are adopted as an integrated current‐collector/active‐material composite, and inkjet printing as a top‐down approach to achieve thin‐film shape control over printed electrode dimensions is used. The novel Li–S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid‐state mechanism. The printed electrodes produce ≈800 mAh g?1 S initially and ≈700 mAh g?1 after 100 charge/discharge cycles at C/2 rate.  相似文献   
7.
Rechargeable batteries based on an abundant metal such as aluminum with a three‐electron transfer per atom are promising for large‐scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al‐ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo2.5 + y VO9 + z as a cathode for Al‐ion batteries. The open‐tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent‐ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al‐based batteries. This study also presents the use of Mo2.5 + y VO9 + z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave‐assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C2H3O2)2) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture‐sensitive organometallic reagents. The Al‐inserted Al x Mo2.5 + y VO9 + z obtained by the microwave‐assisted chemical insertion can be used in Al‐based rechargeable batteries.  相似文献   
8.
Metal phosphides and heteroatom‐doped carbons have been regarded as promising candidates as bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, both have suffered from stability issues during repeated ORR and OER operations in zinc–air batteries (ZABs). Herein, this study reports a versatile cobalt‐based hybrid catalyst with a 1D structure by integrating the metal‐organic framework‐derived conversion approach and an in situ crosslinking method. Among them, the 1D hybrid catalyst composed of ultrasmall cobalt phosphide nanoparticles supported by nitrogen‐, sulfur‐, phosphorus‐doped carbon matrix shows remarkable bifunctional activity close to that of the benchmark precious‐metal catalysts along with an excellent durability in the full potential range covering both the OER and ORR. The overall overpotential of the rechargeable ZABs can be greatly reduced with this bifunctional hybrid catalyst as an air‐electrode, and the cycling stability outperforms the commercial Pt/C catalyst. It is revealed that the cobalt phosphide nanoparticles are in situ converted to cobalt oxide under the accelerated conditions during OER (and/or ORR) of the ZABs and reduces the anodic current applied to the carbon. This contributes to the stability of the carbon material and in maintaining the high initial catalytic properties of the hybrid catalyst.  相似文献   
9.
An efficient model for communications between CAD, CAPP, and CAM applications in distributed manufacturing planning environment has been seen as key ingredient for CIM. Integration of design model with process and scheduling information in real-time is necessary in order to increase product quality, reduce the cost, and shorten the product manufacturing cycle. This paper describes an approach to integrate key product realization activities using neutral data representation. The representation is based on established standards for product data exchange and serves as a prototype implementation of these standards. The product and process models are based on object-oriented representation of geometry, features, and resulting manufacturing processes. Relationships between objects are explicitly represented in the model (for example, feature precedence relations, process sequences, etc.). The product model is developed using XML-based representation for product data required for process planning and the process model also uses XML representation of data required for scheduling and FMS control. The procedures for writing and parsing XML representations have been developed in object-oriented approach, in such a way that each object from object-oriented model is responsible for storing its own data into XML format. Similar approach is adopted for reading and parsing of the XML model. Parsing is performed by a stack of XML handlers, each corresponding to a particular object in XML hierarchical model. This approach allows for very flexible representation, in such a way that only a portion of the model (for example, only feature data, or only the part of process plan for a single machine) may be stored and successfully parsed into another application. This is very useful approach for direct distributed applications, in which data are passed in the form of XML streams to allow real-time on-line communication. The feasibility of the proposed model is verified in a couple of scenarios for distributed manufacturing planning that involves feature mapping from CAD file, process selection for several part designs integrated with scheduling and simulation of the FMS model using alternative routings.  相似文献   
10.
The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO2) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号