首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
工业技术   9篇
  2023年   2篇
  2021年   1篇
  2020年   5篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
以填充石蜡的矩形腔(分为无翅片矩形腔、带翅片矩形腔)为研究对象,建立数学模型。采用有限元软件COMSOL Multiphysics模拟矩形腔内石蜡的熔化行为,分析不同翅片排布方式对石蜡熔化行为的影响,筛选有利于增强石蜡熔化的翅片排布方式。矩形腔右侧壁面为受热面,其他3个面为绝热面,带翅片矩形腔的翅片设置在受热面内侧。在翅片数量(3个翅片)、间隔不变的前提下,保持矩形腔内翅片总长度不变,设置4种翅片排布方式。排布方式1:每个翅片长度均为32 mm。排布方式2:自下而上的翅片长度分别为41、32、23 mm。排布方式3:自下而上的翅片长度分别为23、32、41 mm。排布方式4:自下而上的翅片长度分别为29、38、29 mm。对于无翅片矩形腔,在自然对流传热作用下,右上角的石蜡最先熔化,然后熔化部分向矩形腔中心扩散,直至矩形腔左下角石蜡完全熔化。矩形腔增加翅片可有效改善石蜡熔化的均匀性,缩短了矩形腔内石蜡的熔化时间。排布方式2对改善矩形腔内石蜡熔化均匀性的效果最理想,石蜡完全熔化的时间最短。相同受热时间下,带翅片矩形腔内石蜡的液相面积比(液相石蜡面积与矩形面积之比)明显高于无翅片矩形腔。无翅片矩形腔内石蜡完全熔化的受热时间为3 522 s,带翅片矩形腔翅片排布方式1~4的石蜡完全熔化的受热时间分别为1 874、1 674、2 082、1 910 s。将等长翅片的排布方式1作为基准,评价其他3种翅片排布方式对矩形腔内石蜡熔化的增强作用。翅片排布方式2对矩形腔内石蜡熔化的增强作用明显,增强作用集中在熔化过程的中后期。排布方式3、4起到了相反作用。  相似文献   
2.
铝/石蜡复合相变材料蓄热性能的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
相变储能材料由于其具有周期性储存和释放能量的特点,在电池热管理、太阳能发电等领域存在着广泛的应用。然而由于导热系数低的原因限制了其进一步的应用。高导热率泡沫材料的添加为解决这一不足提供了一种有效的方法。文章采用三周期性极小曲面(TPMS)生成泡沫铝骨架,基于孔隙尺度数值模拟了铝/石蜡复合相变材料相变蓄热的变化规律。结果表明:铝骨架的添加强化了蓄热,缩短了融化时间,在复合相变材料孔隙率为0.90、0.85、0.80时,相比于纯石蜡,完全融化时复合相变材料的融化时长分别缩短了68%、75%和80%,而且蓄热过程中温度场更加均匀;验证了铝骨架与石蜡之间由于热导率存在较大的差异,存在的热非平衡效应,且铝/石蜡复合相变材料孔隙率越低,此效应越明显  相似文献   
3.
4.
文章以对苯二甲醛、对苯二胺和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为原料,采用一锅法合成了一种新型含P和N的高效阻燃剂PABD。探究PABD的含量对环氧树脂(EP)阻燃性和力学性能的影响。结果表明:PABD具有较高的热稳定性和成炭率,PABD的加入提高了EP的阻燃性。EP中添加7%PABD可达到V-0级,极限氧指数(LOI)可达到35.5%,热释放速率峰值(PHRR)和总热释放量(THR)相较纯EP分别下降24.8%和28.2%,具备优异的阻燃效率。当PABD的添加量为7%,EP7的拉伸强度可达65.70 MPa,相较于纯EP的57.0 MPa提高15.3%。合成的PABD不仅可提高EP的阻燃性能,还能够提高EP的力学性能,PABD有望在EP中获得广泛应用。  相似文献   
5.
粗钢筋连接新方法--滚轧直螺纹接头   总被引:1,自引:0,他引:1  
介绍的Ⅲ级粗钢筋采用直螺纹套管连接是钢筋机械连接的新工艺,可节约钢材资金和提高钢材质量、加快施工进度.  相似文献   
6.
为研究梯度孔隙分布多孔介质内自然对流流动和传热问题,建立了三种不同孔隙率分布的多孔介质模型,采用有限元方法进行了模拟计算。基于场协同理论分析了具有梯度孔隙率的多孔介质方腔内速度场与温度梯度的协同关系,探讨了不同方向孔隙率梯度分布对多孔介质腔体内温度场和速度场的影响。研究结果表明,梯度孔隙率的多孔结构低孔隙率区域通过导热强化传热,高孔隙率区域随着Ra数的增加,对流换热逐渐增强,平均Nu数增大很快,具有梯度孔隙率的多孔介质封闭方腔内的自然对流得到强化。  相似文献   
7.
相变储能材料的导热系数低已成为限制其应用的主要问题,在相变材料中添加高导热的固体骨架是解决这一问题行之有效的方法。文章采用三周期极小曲面方法生成固体骨架及描述糊状区的两区域模型,基于格子玻尔兹曼方法(LBM),从孔隙尺度分析了相变材料内填充高导热系数的固体骨架固液相变融化蓄热的变化规律。结果表明:生成的骨架能有效地预测复合相变材料的融化蓄热过程;相变材料的融化蓄热速率与其自然对流强度和有效导热系数有关,对于纯相变材料的融化过程,无量纲参数瑞利数越大自然对流越强,其融化速率越快;当骨架和相变材料导热系数比为10、50、100条件下,融化时间分别缩短了12%、28%、31%;多孔介质骨架孔隙率越低,复合相变材料的有效导热系数就越高,其融化蓄热速率也越高。  相似文献   
8.
为了进一步研究方腔内固液相变的过程,本文基于格子玻尔兹曼方法(LBM),采用两区域模型探究了方腔内填充不同方向梯度孔隙率分布的多孔骨架固液相变过程,从孔隙尺度分析了相变过程的流动和传热机理;并对梯度孔隙率多孔介质内固液相变过程中的糊状区做了详细的描述;重点研究了方腔内不同方向梯度孔隙率分布和均匀孔隙率骨架分布对相变过程的影响。研究结果表明:在填充多孔介质固液相变过程中,传热方式由热传导逐渐向自然对流换热转变,从而导致了上薄下厚的糊状区;在填充多孔介质骨架方腔内,不同方向的梯度孔隙率分布对相变过程的影响是不同的,与均匀孔隙率相比,从左到右线性减小以及从上到下线性增加和减少的多孔介质孔隙率分布,其融化率和高温壁面平均Nu数都较大,表明其孔隙率梯度分布的多孔骨架对相变换热起到了明显的促进作用;而当多孔介质孔隙率分布从左到右线性增加时,相变过程则受到明显的抑制。  相似文献   
9.
为抑制环氧树脂燃烧,文章将硅烷偶联剂与9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)进行反应,合成一种含硅、磷的新型阻燃剂(DOPO-Si),将阻燃剂通过共混或者接枝两种方式加入环氧树脂中,以提高环氧树脂的阻燃性。结果表明:以共混方式引入DOPO-Si,当添加5%的DOPO-Si时,复合材料可通过UL-94垂直燃烧的V-0级,极限氧指数(LOI)达到34.8%,拉伸强度可达70.5 MPa,比纯环氧树脂提高了22.6%。以接枝方式引入DOPO-Si,接枝率为5%时,环氧树脂固化物也可达到UL-94垂直燃烧的V-0级,LOI高达35.1%,但力学性能提升幅度不大。共混和接枝改性方式下,新型阻燃剂DOPO-Si均可提升环氧树脂阻燃性能,同时力学性能也有不同程度提升;但是与纯环氧树脂相比玻璃化转变温度均下降,其中共混方式下降的幅度要大于接枝方式,因此在实际应用中可依据实际需求灵活选取。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号