首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7226篇
  免费   132篇
  国内免费   14篇
工业技术   7372篇
  2021年   40篇
  2019年   40篇
  2018年   77篇
  2017年   55篇
  2016年   67篇
  2015年   72篇
  2014年   97篇
  2013年   258篇
  2012年   159篇
  2011年   195篇
  2010年   142篇
  2009年   157篇
  2008年   199篇
  2007年   201篇
  2006年   199篇
  2005年   193篇
  2004年   175篇
  2003年   155篇
  2002年   142篇
  2001年   139篇
  2000年   141篇
  1999年   163篇
  1998年   750篇
  1997年   411篇
  1996年   313篇
  1995年   208篇
  1994年   210篇
  1993年   193篇
  1992年   128篇
  1991年   110篇
  1990年   104篇
  1989年   106篇
  1988年   111篇
  1987年   108篇
  1986年   109篇
  1985年   122篇
  1984年   104篇
  1983年   78篇
  1982年   87篇
  1981年   85篇
  1980年   75篇
  1979年   71篇
  1978年   70篇
  1977年   98篇
  1976年   153篇
  1975年   40篇
  1974年   42篇
  1973年   51篇
  1972年   43篇
  1968年   32篇
排序方式: 共有7372条查询结果,搜索用时 178 毫秒
1.
Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.  相似文献   
2.
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σ_(ci) and m_i used in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student's t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength.  相似文献   
3.
CAR (Chimeric Antigen Receptor) T cells have demonstrated clinical success for the treatment of multiple lymphomas and leukaemias, but not for various solid tumours, despite promising data from murine models. Lower effective CAR T-cell delivery rates to human solid tumours compared to haematological malignancies in humans and solid tumours in mice might partially explain these divergent outcomes. We used anatomical and physiological data for human and rodent circulatory systems to calculate the typical perfusion of healthy and tumour tissues, and estimated the upper limits of immune cell delivery rates across different organs, tumour types and species. Estimated maximum delivery rates were up to 10 000-fold greater in mice than humans yet reported CAR T-cell doses are typically only 10–100-fold lower in mice, suggesting that the effective delivery rates of CAR T cells into tumours in clinical trials are far lower than in corresponding mouse models. Estimated delivery rates were found to be consistent with published positron emission tomography data. Results suggest that higher effective human doses may be needed to drive efficacy comparable to mouse solid tumour models, and that lower doses should be tested in mice. We posit that quantitation of species and organ-specific delivery and homing of engineered T cells will be key to unlocking their potential for solid tumours.  相似文献   
4.
SMYD3 is a lysine methyltransferase that regulates the expression of over 80 genes and is required for the uncontrolled proliferation of most breast, colorectal, and hepatocellular carcinomas. The elimination of SMYD3 restores normal expression patterns of these genes and halts aberrant cell proliferation, making it a promising target for small molecule inhibition. In this study, we sought to establish a proof of concept for our in silico/in vitro hit-to-lead enzyme inhibitor development platform and to identify a lead small molecule candidate for SMYD3 inhibition. We used Schrodinger® software to screen libraries of small molecules in silico and the five compounds with the greatest predicted binding affinity within the SMYD3 binding pocket were purchased and assessed in vitro in direct binding assays and in breast cancer cell lines. We have confirmed the ability of one of these inhibitors, Inhibitor-4, to restore normal rates of cell proliferation, arrest the cell cycle, and induce apoptosis in breast cancer cells without affecting wildtype cell behavior. Our results provide a proof of concept for this fast and affordable small molecule hit-to-lead methodology as well as a promising candidate small molecule SMYD3 inhibitor for the treatment of human cancer.  相似文献   
5.
6.
ABSTRACT

The AKUFVE techniques were developed by Rydberg and co-workers in the 1960s. The main aim was to be able to perform a series of liquid-liquid extraction data varying one or more parameters and at the same time achieve very pure phases. As such, this technique was later used for short-lived isotope studies in the SISAK system, but also as a standalone unit for a large number of thermodynamic studies of extraction systems both for fundamental understanding as well as more applied investigations. In this paper, the apparatus with modifications made over the decades is described. In addition, studies with stability constant determinations for the zirconium-water-acetylacetone system as well as lanthanide extraction using bromodecanoic acid are exemplified to demonstrate the potential use of the technique. The results shown clearly demonstrate the versatility and ability of the AKUFVE system.  相似文献   
7.
8.
9.
Polymer extrusion is fundamental to the processing of polymeric materials and melt flow temperature homogeneity is a major factor which influences product quality. Undesirable thermal conditions can cause problems such as melt degradation, dimensional instability, weaknesses in mechanical/optical/geometrical properties, and so forth. It has been revealed that melt temperature varies with time and with radial position across the die. However, the majority of polymer processes use only single‐point techniques whose thermal measurements are limited to the single point at which they are fixed. Therefore, it is impossible for such techniques to determine thermal homogeneity across the melt flow. In this work, an extensive investigation was carried out into melt flow thermal behavior of the output of a single extruder with different polymers and screw geometries over a wide range of processing conditions. Melt temperature profiles of the process output were observed using a thermocouple mesh placed in the flow and results confirmed that the melt flow thermal behavior is different at different radial positions. The uniformity of temperature across the melt flow deteriorated considerably with increase in screw rotational speed while it was also shown to be dependent on process settings, screw geometry, and material properties. Moreover, it appears that the effects of the material, machine, and process settings on the quantity and quality of the process output are heavily coupled with each other and this may cause the process to be difficult to predict and variable in nature. POLYM. ENG. SCI., 54:2430–2440, 2014. © 2013 Society of Plastics Engineers  相似文献   
10.
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA‐based logic gates in which DNAzyme catalysis is controlled via toehold‐mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号