首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   828篇
  免费   51篇
  国内免费   5篇
工业技术   884篇
  2023年   8篇
  2022年   32篇
  2021年   72篇
  2020年   53篇
  2019年   58篇
  2018年   48篇
  2017年   31篇
  2016年   35篇
  2015年   21篇
  2014年   27篇
  2013年   72篇
  2012年   35篇
  2011年   36篇
  2010年   27篇
  2009年   27篇
  2008年   29篇
  2007年   25篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   17篇
  2002年   14篇
  2001年   19篇
  2000年   7篇
  1999年   6篇
  1998年   16篇
  1997年   15篇
  1996年   12篇
  1995年   10篇
  1994年   8篇
  1993年   14篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   9篇
  1986年   4篇
  1985年   2篇
  1984年   12篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1974年   4篇
  1966年   2篇
排序方式: 共有884条查询结果,搜索用时 15 毫秒
1.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
2.
In recent building practice, rapid construction is one of the principal requisites. Furthermore, in designing concrete structures, compressive strength is the most significant of all parameters. While 3-d and 7-d compressive strength reflects the strengths at early phases, the ultimate strength is paramount. An effort has been made in this study to develop mathematical models for predicting compressive strength of concrete incorporating ethylene vinyl acetate (EVA) at the later phases. Kolmogorov-Smirnov (KS) goodness-of-fit test was used to examine distribution of the data. The compressive strength of EVA-modified concrete was studied by incorporating various concentrations of EVA as an admixture and by testing at ages of 28, 56, 90, 120, 210, and 365 d. An accelerated compressive strength at 3.5 hours was considered as a reference strength on the basis of which all the specified strengths were predicted by means of linear regression fit. Based on the results of KS goodness-of-fit test, it was concluded that KS test statistics value (D) in each case was lower than the critical value 0.521 for a significance level of 0.05, which demonstrated that the data was normally distributed. Based on the results of compressive strength test, it was concluded that the strength of EVA-modified specimens increased at all ages and the optimum dosage of EVA was achieved at 16% concentration. Furthermore, it was concluded that predicted compressive strength values lies within a 6% difference from the actual strength values for all the mixes, which indicates the practicability of the regression equations. This research work may help in understanding the role of EVA as a viable material in polymer-based cement composites.  相似文献   
3.
Telecommunication Systems - This paper proposes two algorithms for hybrid (Analog–Digital) beamforming in a single-user millimeter-wave (mm-wave) multi-input multi-output (MIMO) systems under...  相似文献   
4.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   
5.
International Journal of Computer Vision - We propose a novel CNN architecture called ACTNET for robust instance image retrieval from large-scale datasets. Our key innovation is a learnable...  相似文献   
6.
The development of the semi-theoretical correlation in Hadzisdmajlovic et al. (1983) for predicting the maximum spoutable height in a spout-fluid bed, is observed to involve certain discrepancies. Based on their experimental data, a new correlation is proposed.  相似文献   
7.
Hydrogen-driven denitrification using the fiber membrane biofilm reactor (MBfR) was evaluated for consistent operation in tertiary wastewater treatment. The possibility of controlling the process rates, as well as biofilm parameters by supplying limited amounts of electron donor (hydrogen), was tested. Limiting the hydrogen supply proved to be efficient in controlling the biofilm growth and performance of the MBfR. Denitrification rates remained unchanged for both synthetic wastewater (SWW) and real municipal wastewater (MWW) effluent as well through the fluctuations in the substrate (NO3-N) concentration. The average denitrification rates were 0.50 (+/- 0.02) g NO3-N per day per m2 for SWW and 0.59 (+/- 0.04) g NO3-N per day per m2 for MWW. Biofilm density rather than thickness was the determining factor in substrate diffusion and biofilm sloughing, ultimately determining operating stability. Limited hydrogen supply assured constant volatile solids (VS) concentration in the biofilm. It was determined that VS/TS ratio higher than 0.25 assured stable biofilm operation. Decrease of VS/TS ratio below 0.25 led to shearing of the nonbiological outer layers of the biofilm. The values of chemical oxygen demand (COD), volatile suspended solids (VSS) and total suspended solids (TSS) in the final effluent were stable and well below wastewater effluent guidelines. Substitutions of bicarbonate with gaseous carbon dioxide as the carbon source did not affect denitrification rates despite lower than optimum pH conditions.  相似文献   
8.
Safety injection system, accumulator injection system and residual heat removal system of CHASNUPP-1 were simulated using the computer code APROS. We observed the qualitative response of the simulated system during injection and re-circulation phases after LOCA. During rapid depressurization of SRC system due to leakage, these systems started coolant injection in the SRC system as per plant requirement. Different thermal-hydraulic parameters of the respective systems are presented and discussed. Results obtained are in good agreement with the reported document of the reference power plant.  相似文献   
9.

Piles are widely applied to substructures of various infrastructural buildings. Soil has a complex nature; thus, a variety of empirical models have been proposed for the prediction of the bearing capacity of piles. The aim of this study is to propose a novel artificial intelligent approach to predict vertical load capacity of driven piles in cohesionless soils using support vector regression (SVR) optimized by genetic algorithm (GA). To the best of our knowledge, no research has been developed the GA-SVR model to predict vertical load capacity of driven piles in different timescales as of yet, and the novelty of this study is to develop a new hybrid intelligent approach in this field. To investigate the efficacy of GA-SVR model, two other models, i.e., SVR and linear regression models, are also used for a comparative study. According to the obtained results, GA-SVR model clearly outperformed the SVR and linear regression models by achieving less root mean square error (RMSE) and higher coefficient of determination (R2). In other words, GA-SVR with RMSE of 0.017 and R2 of 0.980 has higher performance than SVR with RMSE of 0.035 and R2 of 0.912, and linear regression model with RMSE of 0.079 and R2 of 0.625.

  相似文献   
10.

The aim of this paper is to develop a stochastic-parametric model for the generation of synthetic ground motions (GMs) which are in accordance with a real GM. In the proposed model, the dual-tree complex discrete wavelet transform (DT-CDWT) is applied to real GMs to decompose them into several frequency bands. Then, the gamma modulating function (GMF) is used to simulate the wavelet coefficients of each level. Consequently, synthetic wavelet coefficients are generated using extracted model parameters and then synthetic GM is extracted by applying the inverse DT-CDWT to synthetic wavelet coefficients. This model simulates the time–frequency distribution of both wide-frequency and narrow-frequency bandwidth GMs. Besides being less time consuming, it simulates several dominant frequency peaks at any moment in the time duration of GM, because each frequency band is separately simulated by the gamma function. Moreover, the inelastic response spectra of synthetic GMs generated by the proposed model are a good estimate of target ones. Using the random sign generator in the proposed model, it is possible to generate any number of synthetic GMs in accordance with a recorded one. Because of these advantages, the proposed model is suitable for using in performance-based earthquake engineering.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号