首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
工业技术   2篇
  2019年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In this work, a novel technique of inkjet printing e‐textiles with particle free reactive silver inks on knit structures is developed. The inkjet‐printed e‐textiles are highly conductive, with a sheet resistance of 0.09 Ω sq‐1, by means of controlling the number of print passes, annealing process, and textile structures. It is notable that the inkjet process allows textiles to maintain its inherent properties, including stretchability, flexibility, breathability, and fabric hand after printing process. This is achieved by formation of ultrathin silver layers surrounding individual fibers. The silver layers coated on fibers range from 250 nm to 2.5 µm, maintaining the size of interstices and flexibility of fibers. The annealing process, structure of fibers, and printed layers significantly influence the electrical conductivity of the patterned structures on textiles. Outstanding electrical conductivity and durability are demonstrated by optimizing print passes, controlling textile structures, and incorporating an in situ annealing process. The electrical resistance dependence on the strain rate of the textiles is examined, showing the ability to maintain electrical conductivity to retain light‐emitting diode use, stable more than 500 consecutive strain cycles. Most importantly, inkjet‐printed e‐textiles maintain their characteristic washability, breathability, and fabric hands for applications in wearable technology.  相似文献   
2.
Since 1996, 52,202 water samples from hand tubewells were analyzed for arsenic (As) by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) from all 64 districts of Bangladesh; 27.2% and 42.1% of the tubewells had As above 50 and 10 μg/l, respectively; 7.5% contained As above 300 μg/l, the concentration predicting overt arsenical skin lesions. The groundwater of 50 districts contained As above the Bangladesh standard for As in drinking water (50 μg/l), and 59 districts had As above the WHO guideline value (10 μg/l). Water analyses from the four principal geomorphological regions of Bangladesh showed that hand tubewells of the Tableland and Hill tract regions are primarily free from As contamination, while the Flood plain and Deltaic region, including the Coastal region, are highly As-contaminated. Arsenic concentration was usually observed to decrease with increasing tubewell depth; however, 16% of tubewells deeper than 100 m, which is often considered to be a safe depth, contained As above 50 μg/l. In tubewells deeper than 350 m, As >50 μg/l has not been found. The estimated number of tubewells in 50 As-affected districts was 4.3 million. Based on the analysis of 52,202 hand tubewell water samples during the last 14 years, we estimate that around 36 million and 22 million people could be drinking As-contaminated water above 10 and 50 μg/l, respectively. However for roughly the last 5 years due to mitigation efforts by the government, non-governmental organizations and international aid agencies, many individuals living in these contaminated areas have been drinking As-safe water. From 50 contaminated districts with tubewell As concentrations >50 μg/l, 52% of sampled hand tubewells contained As <10 μg/l, and these tubewells could be utilized immediately as a source of safe water in these affected regions provided regular monitoring for temporal variation in As concentration. Even in the As-affected Flood plain, sampled tubewells from 22 thanas in 4 districts were almost entirely As-safe. In Bangladesh and West Bengal, India the crisis is not having too little water to satisfy our needs, it is the challenge of managing available water resources. The development of community-specific safe water sources coupled with local participation and education are required to slow the current effects of widespread As poisoning and to prevent this disaster from continuing to plague individuals in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号