首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
工业技术   9篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前端为并行多通道卷积网络(PMCCNN),提取信号特征,挖掘数据的时序特性,并采用逐层训练和微调的方式提升参数的收敛性;后端为长短时记忆(LSTM)网络,基于特征进行剩余使用寿命预测,并采用加权平均的方法对预测结果进行平滑处理。在一个轴承加速寿命实验的公开数据集上使用留一法验证了该模型的准确性,实验结果表明:所提模型的平均误差与最大误差分别比传统的卷积神经网络(CNN)低23.38%和15.84%,比传统的LSTM低24.14%和19.01%,比卷积长短时记忆网络(CNN-LSTM)低30.32%和23.09%。  相似文献   
2.
在现有轨道车辆轴承温度预警研究中,因监测数据复杂度不一致导致特征难以选择,同时现有预警方法往往只能在轴承故障发生前的几分钟进行预警,为此,提出一种基于特征选择的轨道车辆轴承温度预警方法.首先采用皮尔逊系数计算特征相关性后分析引入关联轴承,然后依据线性相关性将低线性相关特征数据与关联轴承数据一起输入LightGBM模型,以对特征进行再次选择;其次,利用大量正常状态下的履历数据,基于深度学习模型双向门控循环单元构建轴承温度预测模型;最后利用某轨道车辆实测数据进行预警方法验证.结果表明:对于正常轴承,轴承温度预测模型的温度预测值和实际值的差异小于4℃且稳定;而对于异常轴承,在轴承故障发生前的数小时即可发现两者间存在大于4℃以上的持续显著差异.  相似文献   
3.
在预测轴承寿命时,使提取的特征和剩余寿命保持高相关性,并使不同的特征之间保持低相关性,是有利于提升轴承寿命预测精度的。为解决单一的特征评价方法对后者考虑不足的问题,提出了一种基于相关性改进Kmeans聚类算法(correlation-based improved Kmeans cluster algorithm, Corr-Kmeans)和初始聚类中心确定方法,并与特征评价相结合,最终提出一种基于特征聚类和评价的轴承寿命预测新方法。首先利用卷积自编码对频域信息提取初始特征,用Corr-Kmeans对初始特征按相关性进行聚类,使得聚类后的特征类内相关性高,而类间相关性低;其次,使用相关性、单调性和鲁棒性3个指标来综合评价每一类中的特征,按照筛选阈值将得分较高的特征从每一类中分别选出,组成用于训练与预测的特征子集;最后采用LSTM(long short-term memory, LSTM)网络对轴承剩余寿命进行预测。在一个轴承加速寿命试验的公开数据集上使用留一法进行验证,利用对比试验证明了该方法在预测轴承剩余寿命上的有效性。  相似文献   
4.
在实际工况下,轴承可采集到的故障样本分布往往呈现极强的不均衡特性,该特性对故障诊断精度具有不可忽略的影响。为提高样本不均衡情况下的轴承故障诊断精度,采用样本生成扩充的思路,提出一种基于深度卷积生成对抗网络的故障诊断方法。首先针对轴承振动数据信号的特性,采用快速傅里叶变换使其转化为频域,并通过归一化进行预处理;其次利用深度卷积生成对抗网络进行对抗训练,生成具有真实样本特征的虚拟样本。模型采用衰减学习率并增设Dropout层,提高了模型生成的效率及真实性。最后,构建一维卷积神经网络模型完成故障诊断。实验验证结果表明,提出的方法能有效提高样本不均衡情况下的诊断精度以及诊断稳定性。  相似文献   
5.
在现有轨道车辆轴承温度预警研究中,因监测数据复杂度不一致导致特征难以选择,同时现有预警方法往往只能在轴承故障发生前的几分钟进行预警,为此,提出一种基于特征选择的轨道车辆轴承温度预警方法.首先采用皮尔逊系数计算特征相关性后分析引入关联轴承,然后依据线性相关性将低线性相关特征数据与关联轴承数据一起输入LightGBM模型,以对特征进行再次选择;其次,利用大量正常状态下的履历数据,基于深度学习模型双向门控循环单元构建轴承温度预测模型;最后利用某轨道车辆实测数据进行预警方法验证.结果表明:对于正常轴承,轴承温度预测模型的温度预测值和实际值的差异小于4℃且稳定;而对于异常轴承,在轴承故障发生前的数小时即可发现两者间存在大于4℃以上的持续显著差异.  相似文献   
6.
在轴承剩余使用寿命预测的研究过程中,全寿命周期数据的波动性是影响轴承剩余使用寿命预测精度的因素之一.为了降低这种因素的影响,结合迭代生成方式生成的数据具有比原始数据波动性更小的优点,提出一种基于迭代生成特征替换的轴承寿命预测方法.首先采用深度学习模型提取信号特征,其次以迭代生成的方式生成新的信号特征,然后使用该信号特征代替原本提取的信号特征参与轴承寿命预测模型的训练与预测.在一个公开轴承数据集上验证了该方法的有效性,将迭代生成的信号特征与原始数据直接提取的信号特征进行对比,结果表明:迭代生成信号特征在时间方向上具有更小的波动性;这种信号特征有利于降低轴承剩余使用寿命的预测误差.  相似文献   
7.
针对低成本惯性测量单元(IMU)在室内定位应用中普遍存在漂移严重、精度较低等问题,通过实验分析低成本传感器误差特点,并提取其定位误差特征,提出一种基于低成本IMU的自动导引车(AGV)室内实时定位误差补偿方法,以提高其定位精度.为解决惯性导航位置解算存在累积误差的问题,将RFID电子标签作为参考节点,实现累积误差的定期消除,进一步提高AGV的定位精度.实验验证表明,相较于单纯使用低成本IMU定位,这里方法定位精度提高了31%.  相似文献   
8.
在轴承剩余使用寿命预测的研究过程中,全寿命周期数据的波动性是影响轴承剩余使用寿命预测精度的因素之一.为了降低这种因素的影响,结合迭代生成方式生成的数据具有比原始数据波动性更小的优点,提出一种基于迭代生成特征替换的轴承寿命预测方法.首先采用深度学习模型提取信号特征,其次以迭代生成的方式生成新的信号特征,然后使用该信号特征代替原本提取的信号特征参与轴承寿命预测模型的训练与预测.在一个公开轴承数据集上验证了该方法的有效性,将迭代生成的信号特征与原始数据直接提取的信号特征进行对比,结果表明:迭代生成信号特征在时间方向上具有更小的波动性;这种信号特征有利于降低轴承剩余使用寿命的预测误差.  相似文献   
9.
在轴承剩余使用寿命预测的研究过程中,全寿命周期数据的波动性是影响轴承剩余使用寿命预测精度的因素之一.为了降低这种因素的影响,结合迭代生成方式生成的数据具有比原始数据波动性更小的优点,提出一种基于迭代生成特征替换的轴承寿命预测方法.首先采用深度学习模型提取信号特征,其次以迭代生成的方式生成新的信号特征,然后使用该信号特征代替原本提取的信号特征参与轴承寿命预测模型的训练与预测.在一个公开轴承数据集上验证了该方法的有效性,将迭代生成的信号特征与原始数据直接提取的信号特征进行对比,结果表明:迭代生成信号特征在时间方向上具有更小的波动性;这种信号特征有利于降低轴承剩余使用寿命的预测误差.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号