首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
工业技术   7篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用数值模拟和试验研究相结合的方法探究了开槽斜板对射流冲击噪声及壁面横向射流尾迹的影响,并分析了其降噪机理。试验方面,采用PIV技术和远场传声器弧阵列在半消声室内测量了冲击射流流场和声场特性,数值模拟则采用分离涡模拟方法(detached-eddy simulation,DES)和FW-H声学比拟法相结合的混合方法,数值结果与流场/声场试验测量结果吻合较好。研究发现:冲击斜板的存在增加了冲击射流流场上游方向的声辐射;所有压比下,斜板表面凹槽结构都能够明显抑制横向流动,但只在NPR>2.5时,开槽斜板才能较好的抑制冲击射流噪声;开槽斜板主要是降低2500 Hz附近的纯音幅值,对3500~4500 Hz内的多个纯音基本不产生影响,因为凹槽结构会耗散掉冲击射流滞止区内的旋涡对,但不会影响射流剪切层涡脱落频率(3750 Hz)及该频率附近的纯音;开槽斜板对横向流动的抑制效果高达46%,且不同槽宽、槽深的开槽斜板均能够有效控制冲击射流横向流动尾迹。  相似文献   
2.
对某型轴流压气机叶片尾缘进行三角锯齿建模,利用Fluent软件对基准叶片、短锯齿叶片、长锯齿叶片进行数值模拟研究。研究表明:锯齿尾缘可以有效加强尾迹区与主流区之间的流动掺混,且长锯齿尾缘尾迹区流动掺混程度比短锯齿尾缘更强;流动掺混的增强使得叶片出口速度更均匀,从而减小速度亏损。同时,由于长锯齿尾缘叶片显著地降低了尾缘附近的湍流强度,导致湍流与叶片尾缘相互干涉作用降低,因而能有效降低压气机叶片噪声,相比于基准叶片及短锯齿尾缘叶片,长锯齿叶片在降低噪声和减小流动损失方面效果更佳。  相似文献   
3.
为探究波浪翼型的降噪效果,采用大涡模拟(LES)和边界元法(BEM)相结合的混合方法对3种不同波浪翼型进行模拟,并通过试验验证了仿真模型的可行性,进一步分析了3种不同波浪翼型(表面波浪Wavy airfoil-A、前缘波浪Wavy airfoil-B和前缘+表面波浪Wavy airfoil-C)对圆柱-翼型湍流干涉噪声的影响。研究结果表明:3种模型都能在一定程度上降低翼型湍流干涉噪声,其中Wavy airfoil-C模型降噪效果最好,降噪频率范围最广,其垂直流向方向总声压级降噪量可达6.7 dB;Wavy airfoil-C模型不仅能有效地降低翼型表面压力脉动、各截面上的湍流强度、升阻力系数波动、功率谱密度,还能利用其前缘波浪结构有效地减少前缘主声源区域的面积,且能利用其表面波浪结构的导流作用降低翼型后缘的声源振动幅值。  相似文献   
4.
动静干涉下低压涡轮非定常气动载荷研究   总被引:1,自引:0,他引:1  
为研究动静干涉下轴向间距和尾缘锯齿结构对低压涡轮叶片非定常气动载荷的控制作用,对高效节能发动机(energy efficient engine,简称E3)低压涡轮最后一级的内部流场进行了数值仿真,研究了不同轴向间距和静叶尾缘锯齿结构两种情况下,下游动叶表面非定常气动载荷的变化规律。研究发现:增大轴向间距可以加强尾迹与主流的掺混,消除气流不均匀性,削弱下游动叶表面的非定常气动载荷;静叶采用尾缘锯齿结构不仅可以加强尾迹与主流的掺混,同时还会改变尾缘处的涡结构,对下游动叶前缘产生破坏性干涉效应,使其最大载荷波动降低约30%,减少静叶尾迹速度亏损75.7 m/s,还能适当提升涡轮的流通能力和时均效率。与采用直尾缘静叶的模型相比,采用锯齿尾缘静叶不仅能大幅度地改善涡轮的转静干涉效应和气动性能,还能在不影响涡轮效率的前提下,将涡轮轴向间距缩短10%。  相似文献   
5.
航空发动机的效率和噪声一直是人们关注的热点,压气机是航空发动机的重要组成部件,压气机叶片尾缘结构对其尾迹特性影响重大。为此,对某型轴流压气机叶片尾缘进行典型三角形锯齿建模,通过Fluent软件模拟研究锯齿尾缘叶片尾迹区域的三维湍流流场信息,对比不同尺寸的锯齿尾缘叶片与无锯齿尾缘叶片的尾迹流动特征和声场特征,分析锯齿尾缘叶片的流动损失机理及降噪机理。研究发现:流过锯齿尾缘的气流会通过锯齿缝隙从压力面流向吸力面,给予尾迹区域一定的能量补偿,从而减小尾迹的速度亏损和总压损失;尾缘锯齿结构会破坏叶片展向涡流结构,使大尺度涡变成各种不同尺度的小涡,通过涡能量扩散来降低尾缘噪声;在齿宽一定的情况下,存在一个最佳的齿高,使得降低流动损失和降低噪声的效果最佳。  相似文献   
6.
针对NACA 0012翼型,在马赫数为0.176的来流条件下,首先利用数值模拟研究了翼型前缘下弯角度、前缘偏转位置、后缘下弯角度和后缘偏转位置等因素对翼型气动性能的影响规律;其次,以升阻比为目标,上述4个因素为设计变量,利用神经网络建立升阻比与4个设计变量间的预测模型;然后,充分考虑优化精度和神经网络训练数据库的计算量,构造了一种翼型优化过程与神经网络预测耦合的迭代优化策略,基于该优化策略得到最优变弯度翼型构型。对比优化翼型和原始翼型,升阻比提高约22%,较大程度改善了翼型的气动特性;并且通过远场噪声分析,发现优化翼型表现出了较好的声学性能,在1 000 Hz附近单音噪声最大可降低12 dB。  相似文献   
7.
直升机传动系统轴系结构复杂,轴系的相对位置变化将影响整个传动系统传递特性,文中以某型直升机尾传动系统——轴系相互垂直的螺旋锥齿轮系为对象,开展轴系相对位置变化下齿轮对啮合力变化特性研究。通过建立尾传轴系相对位置变化的动力学模型,结合多体动力学软件,仿真分析了不同轴系相对位置变化量、不同载荷、不同转速下,齿轮副啮合力变化规律。结果表明:平均啮合力随偏移位置增大而减小,随倾斜位置增大而增大;轴系的倾斜位置变化较偏移位置变化对齿轮啮合特性影响更大。本研究为直升机尾传动系统运行状态监测提供理论依据,对提高直升机传动系统运行稳定性,确保其安全高效运行等有着重要意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号