首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4636篇
  免费   178篇
  国内免费   21篇
工业技术   4835篇
  2023年   33篇
  2021年   127篇
  2020年   63篇
  2019年   77篇
  2018年   85篇
  2017年   68篇
  2016年   116篇
  2015年   89篇
  2014年   133篇
  2013年   260篇
  2012年   262篇
  2011年   301篇
  2010年   252篇
  2009年   278篇
  2008年   293篇
  2007年   226篇
  2006年   217篇
  2005年   151篇
  2004年   161篇
  2003年   172篇
  2002年   158篇
  2001年   75篇
  2000年   73篇
  1999年   55篇
  1998年   121篇
  1997年   79篇
  1996年   76篇
  1995年   72篇
  1994年   63篇
  1993年   71篇
  1992年   59篇
  1991年   57篇
  1990年   33篇
  1989年   50篇
  1988年   22篇
  1987年   43篇
  1986年   30篇
  1985年   47篇
  1984年   30篇
  1983年   36篇
  1982年   35篇
  1981年   35篇
  1980年   23篇
  1979年   25篇
  1978年   25篇
  1977年   21篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   7篇
排序方式: 共有4835条查询结果,搜索用时 31 毫秒
1.
Both fluorescent and luminescent observation are widely used to examine real-time gene expression patterns in living organisms. Several fluuorescent and luminescent proteins with specific optical properties have been developed and applied for simultaneous, multi-color observation of more than two gene expression profiles. Compared to fluorescent proteins, however, the application of multi-color luminescent imaging in living organisms is still limited. In this study, we introduced two-color luciferases into the soil nematode C. elegans and performed simultaneous analysis of two gene expression profiles. Using a green-emitting luciferase Eluc (emerald luciferase) and red-emitting luciferase SLR (stable luciferase red), the expression patterns of two genes were simultaneously observed in single animals from embryonic to adult stages over its whole life span. In addition, dual gene activities were observed at the single embryo level, with the simultaneous observation of morphological changes. These are the first application of a two-color luciferase system into a whole animal and suggest that precise relationship of expression patterns of multiple genes of interest can be analyzed over the whole life of the animal, dependent on the changes in genetic and/or environmental conditions.  相似文献   
2.
Directed evolution of Cp*RhIII-linked nitrobindin (NB), a biohybrid catalyst, was performed based on an in vitro screening approach. A key aspect of this effort was the establishment of a high-throughput screening (HTS) platform that involves an affinity purification step employing a starch-agarose resin for a maltose binding protein (MBP) tag. The HTS platform enables efficient preparation of the purified MBP-tagged biohybrid catalysts in a 96-well format and eliminates background influence of the host E. coli cells. Three rounds of directed evolution and screening of more than 4000 clones yielded a Cp*RhIII-linked NB(T98H/L100K/K127E) variant with a 4.9-fold enhanced activity for the cycloaddition of acetophenone oximes with alkynes. It is confirmed that this HTS platform for directed evolution provides an efficient strategy for generating highly active biohybrid catalysts incorporating a synthetic metal cofactor.  相似文献   
3.
Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5′-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The “reaction medium approach” enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.  相似文献   
4.
The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate-dependent persistent photocurrent is observed, arising from the modulation of substrate-trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug-related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity.  相似文献   
5.
Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine. Elderly or immunocompromised individuals are particularly susceptible to infectious diseases; specifically, infections in the spine can impair the ability of the spine to support the trunk, causing patients to be bedridden, which can also severely affect the physical condition of patients. Although treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection remain to be elucidated because they have pathological manifestations that are similar to but distinct from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation. Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab, and bisphosphonates, in treating this pathological condition.  相似文献   
6.
The biorefinery has been recognized as a new industry to produce both energy and chemical materials such as olefins and BTX from renewable resources. In this context the conversion of butyric acid over zeolites was investigated for establishing a new production route of propylene. Propylene was mainly generated by decarbonylation and dehydration of butyric acid. Our study proved that H-ZSM-5 (750) and silicalite were the best industrial catalyst among the tested ones. For H-ZSM-5 (750), the selectivity of propylene reached 64.2 C% and the ratio of the yield for propylene to theoretical yield (75 C%) became 85.6%.  相似文献   
7.
8.
9.
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman’s correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.  相似文献   
10.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号