首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   2篇
工业技术   15篇
  2023年   3篇
  2021年   1篇
  2020年   3篇
  2014年   1篇
  2012年   4篇
  2011年   3篇
排序方式: 共有15条查询结果,搜索用时 226 毫秒
1.
通过选区激光熔化(SLM)技术制备Al-Mg-Sc-Zr铝合金,系统研究了不同工艺参数对铝合金粉末成形性以及不同时效处理条件对SLM成形样品组织和力学性能的影响。结果表明,在高激光功率和低激光扫描速度下,SLM成形样品的致密度较高。沿样品沉积方向可观察到熔池层层堆叠的显微组织,熔池边界和熔池内部均存在细小纳米颗粒。经不同温度时效处理后,样品的硬度和压缩屈服强度先增加后降低。SLM成形样品经400℃时效处理3 h后屈服强度达到最大值469±4 MPa。  相似文献   
2.
3D封装是未来电子封装制造技术领域的重要发展方向,3D封装中微凸点的尺寸将急剧降低,此时,芯片凸点下金属层(UBM)可能仅包含几个甚至单个晶粒。因此,UBM的晶体取向对界面金属间化合物(IMC)的形核和生长过程将具有显著影响,而界面IMC的特性会直接影响到凸点微/纳尺度互连的可靠性。因此,以单晶作为UBM研究界面物质的传输与IMC的生长规律,具有重要的理论和应用价值。本文对近年来以单晶Cu、Ni和Ag作为UBM焊点的界面反应进行综合分析,总结了单晶UBM上特殊形貌IMC晶粒的形成条件、界面IMC与单晶基体的位向关系、IMC的生长动力学过程、柯肯达尔空洞的形成规律、单晶UBM上IMC的晶体取向调控方法及晶体取向对无铅焊点力学性能和可靠性的影响,为评价单晶UBM凸点的力学性能和可靠性及提供指导。  相似文献   
3.
对Mn1.2Fe0.8P0.48Si0.52和非化学计量比Mn1.2Fe0.8P0.48Si0.49化合物的物相与磁热效应(MCE)进行了研究。结果表明:两种化合物均为Fe2P型六角结构(空间群为P-62m),化合物中含有少量的(Fe,Mn)3Si第二相。当Si的含量x由0.52降到0.49时,化合物的居里温度由268K升到282K,而Si含量的变化对化合物的热滞没有明显的影响。Mn1.2Fe0.8P0.48Si0.52和Mn1.2Fe0.8P0.48Si0.49化合物在外磁场变化为0~1.5T下的最大磁熵变分别为11.7J/kg·K和9.0J/kg·K。低成本的原料、较大的磁熵变使得Mn1.2Fe0.8P0.48Six化合物成为一种理想的室温磁致冷材料。  相似文献   
4.
用差示扫描量热(DSC)法测定过渡金属化合物Mn2-xFexP0.51Si0.49(x=0.8,0.85,0.9,0.95,1.0)的比热容。结果表明,随着Fe含量的增加相变温度TC﹑相变热滞ΔThys增加。x=0.8,0.85,0.9,0.95,1.0对应的相变温度分别为280.1,311.2,316.5,323.6,347.0K,相变热滞分别为27.8,32.5,37.2,34,46.6K。由比热容确定了该系列化合物在相变点附近的最大熵变,其值分别为13.3,13.9,15.3,13.1,15.6J·(mol·K)-1。  相似文献   
5.
用机械合金化方法制备出了Mn1.3Fe0.7P0.45Si0.55化合物。研究了Mn1.3Fe0.7P0.45Si0.55化合物的结构、磁性和磁热效应。结果表明,该化合物形成了Fe2P型六角结构,空间群为P62m,化合物中存在少量的(Mn,Fe)3Si相。在居里点附近,随着温度的提高化合物发生了由铁磁到顺磁的一级相变过程。化合物的Curie温度为315K,热滞为4K。在1.5T磁场变化下,化合物的最大等温磁熵变为10.3J/(kg.K)。低成本的原料、简单的制备工艺、合适的Curie温度、较小的热滞和较大的磁熵变,使得Mn1.3Fe0.7P0.45Si0.55化合物有希望成为一种可应用的新型室温磁制冷材料。  相似文献   
6.
应用"团簇+连接原子"模型,基于合金液-固局域结构相容性和金属选区激光熔化(SLM)工艺熔体急冷的技术特性,设计高Mg含量SLM专用AlSiMg1.5合金新成分,系统研究时效温度和时间对SLM成形AlSiMg1.5合金显微组织和力学性能的影响。结果表明,通过调整工艺参数,可获得近乎全致密的SLM成形样品。当时效温度为300℃时,随着时效时间的延长,SLM成形样品岛状富Al组织中过固溶Si逐渐析出长大,网格状富Si组织逐渐分解球化,样品的硬度和压缩屈服强度逐渐降低,塑性明显增加。当时效温度为150℃时,不同时效时间下SLM成形样品的显微组织没有发生明显变化,但硬度和屈服强度随时效时间的延长先增大后略有降低。SLM成形AlSiMg1.5样品经150℃时效处理后的最大显微硬度和压缩屈服强度分别为(169±1) HV和(453±4) MPa,样品延伸率超过25%。本工作设计获得了成形性和力学性能优异的SLM专用铝合金新成分Al91.0Si7.5Mg1.5(质量分数,%)。  相似文献   
7.
8.
热处理工艺对( Mn,Fe)2(P,Si)系列化合物磁性的影响   总被引:1,自引:1,他引:0  
用机械合金化方法成功制备了Mn1.35Fe0.65 P1-x Six(x=0.56和0.57)化合物,分别采用了两种不同的工艺对化合物进行热处理.用X射线衍射仪、振动样品磁强计和绝热温变测量仪分别对样品的结构、等温磁熵变和绝热温变进行了测量.实验结果表明,经过两种不同热处理工艺处理的化合物都形成了Fe2P型六角结构,空间群为P62m,在经过淬火处理的Mn1..Fe0 eP0..Si0.56化合物中存在少量的(Mn,Fe) 5Si3第二相,空间群为P63/mcm.样品的居里温度都在室温附近,在278 ~296 K之间变化,不同热处理工艺对化合物的居里温度具有一定的影响.经过淬火处理的化合物存在较小的热滞和较大的等温磁熵变,两种化合物的热滞都由自然冷却处理时的5K降低到淬火处理时的3K.当Si的含量分别为0.56和0.57时,与经过自然冷却处理的化合物相比,经过淬火处理的化合物的最大磁熵变分别提升了33%和20%.在经过淬火处理的Mn1.35Fe0.65P0.44Si0.56化合物磁熵变最大,磁熵变的最大值为4.3J·kg-1·K-1.经过自然冷却处理的Mn1.35 Fe0.65P0.44 Si0.56化合物的最大绝热温变为1.2K.低成本的原料、较小的热滞、理想的制冷温区和较大的磁热效应使得Mn1.35 Fe0.65P1-xSix这一系列化合物在室温磁致冷方面有应用前景.  相似文献   
9.
利用振动球磨工艺制备了LaFe11.44Si1.56化合物,结果表明,在1100℃仅需要热处理30min,该化合物就能形成NaZn13型立方晶体结构;与电弧熔炼工艺制备的试样相比较,振动球磨工艺制备的试样的居里温度提高了15K,但最大磁熵变有所减小。因此,利用振动球磨工艺合成La(Fe,Si)13化合物有进一步研究的价值。  相似文献   
10.
针对选区激光熔化(SLM)高Mg含量AlSiMg3合金成形性差的缺点,通过Zr进行合金化,研究了工艺参数对SLM成形高Mg含量Al-Si-Mg-Zr合金的成形性及时效处理对合金组织和力学性能的影响。结果表明,SLM成形Al-Si-Mg-Zr合金的熔池边界处形成了大量的细小等轴晶,从而有效地避免了样品在成形过程中裂纹的产生,增加了样品的SLM成形性,不同激光功率和激光扫描速度下获得样品的孔隙率均低于0.3%。拉伸测试结果表明,成形态样品的屈服强度(YS)为(426±8) MPa,极限抗拉强度(UTS)为(464±12) MPa。经165℃时效处理后,由于α-Al晶粒内部纳米强化相的增多,样品的强度增加明显,时效样品的最大YS和UTS分别为(482±11)MPa和(522±10)MPa。本研究获得SLM成形Al-Si-Mg-Zr样品的强度高于目前商用的SLM成形Al-Si-Mg合金。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号