首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
工业技术   8篇
  2014年   1篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有8条查询结果,搜索用时 78 毫秒
1
1.
Three series of interpenetrating polymer networks (IPNs) based on a polyurethane (castor oil + toluene diisocyanate) with polystyrene, poly(methyl methacrylate), and poly(n-butyl methacrylate) were synthesized and characterized. Dielectric relaxation studies of these IPNs were carried out from ?150 to 100°C in the 100 Hz to 100 kHz range. The effects of structural variables such as composition, type of vinyl monomer, as well as the effect of interaction of the phases on the dielectric properties were studied. A certain degree of phase mixing was observed to exist in all series as detected by the variation of the glass-transition temperatures of the IPNs. Maxwell–Wagner–Sillars polarization at the interface of the two phases was observed. © 1994 John Wiley & Sons, Inc.  相似文献   
2.
This study is aimed at exploring the ability of very small sized N-bearing molecules to generate and stabilize microporous aluminophosphates. Two new AlPO4-n materials, called IST-1 and IST-2, have been obtained in aqueous media using, as main template, methylamine (MA), directly added, or generated in situ from methylformamide (MF) degradation. While IST-1 topology proved to be novel, IST-2 appears structurally related to AlPO4-53(A). The obtained materials were characterized by powder XRD, TG/DSC, SEM and solid-state NMR. Tetraalkylammonium (TEA) cations were used as potential co-templates but only MA and water were found incorporated in the pore volumes of both structures, which argues for their true templating role. In IST-1, 13C solid-state NMR studies showed that half of MA species, presumably protonated, is H-bonded to framework oxygens while the other half surprisingly bonds directly to framework Al atoms. 13C NMR showed that only protonated MA occurs in IST-2 channels. TEA+ cations definitely do not play any specific template role. They indirectly favor the crystallization of IST-1 or IST-2 devoid from other crystalline or amorphous side phases, by interacting with part of the Al and P in solution and forming soluble [AlPO4(OH)]–[TEA,HMA] complexes, substantially modifying the compositions of gels precursors to each phase during nucleation and/or growth steps. While both IST-1 and IST-2 crystallize from gels of similar initial compositions, it was demonstrated that the new MA/T ratio (T = Al or P) obtained after in situ complexation was the key parameter that specifically governs the crystallization of each phase.  相似文献   
3.
ABSTRACT

The aim of this study was to use 3D modeling to differentiate not only among the four different types of lactose α-lactose monohydrate, spray-dried lactose, agglomerated lactose and lactose anhydrous but also between products from different manufacturers. Further “box-counting” fractal analysis of SEM images was done to gain additional information on tableting characteristics and tablet properties which can be found in the fractal structure. Twelve different materials from different manufacturers were analyzed for their powder-technological and physicochemical properties. They were tableted on an eccentric tableting machine at graded maximum relative densities and the recorded data, namely force, time, and displacement were analyzed by the 3D modeling technique. Tablet properties such as, elastic recovery, crushing force and morphology were analyzed. The results show that 3D modeling can precisely distinguish deformation behavior for different types of lactose and also for the same type of material produced with a slightly different technique. Furthermore, the results showed that the amorphous content of the lactose determined the compactibility of the material, which is due to a reversible exceeding of the glass transition temperature of the material. The three fractal dimensions DBW (box surface dimension), DWBW (pore/void box mass dimension), and DBBW (box solid mass dimension) are capable of describing morphological differences in lactose materials. Multivariate regression analysis showed that the fractal surface structure of the lactose-based materials is strongly correlated to tableting characteristics and tablet properties. Especially with regards to 3D modeling, it was found that the fractal indices can describe the parameters time plasticity d, pressure plasticity e, and fast elastic decompression, which is the inverse of ω. In addition, the 3D parameters are able to describe the powder and tablet fractal indices. In conclusion, the 3D modeling is not only able to characterize the compression process but it can also provide information on the final tablet morphology.  相似文献   
4.
The mechanism of fast hydrogen generation from pure water using selectively activated Al–SnCl2 composites was elucidated with the help of experimental data using combined XRD, SEM, EDX, DSC and calorimetric techniques. It is found that H2 is produced from two different but simultaneous routes specific to the Al–SnCl2 composite stoichiometry achieved after ball milling the precursor that readily yields, besides the excess of Al, Sn and AlCl3. Hydrogen is simultaneously produced from the reaction of the so-formed Al–Sn alloy with water, and from the reaction of the in situ generated AlCl3 with water, yielding HCl (protons) that further again react with Al, both reactions significantly increasing the hydrogen production rate. The effect of Bi on the hydrogen conversion yield on the Al–SnCl2 composite was also investigated. The electrochemical activity of Al is further enhanced by doping Bi into Al–SnCl2 composite. Meanwhile, DFT (density functional theory) calculations show that Bi micro domains present onto the Al (111) crystallite faces of the composite significantly reduce the adsorption energy of the OH groups while, Mg- or Cr-doped Al–SnCl2 composites increase this adsorption energy. The Mulliken charge analysis indicates that Bi leads to less electron transport between Al and O atoms (weaker interaction) than pristine Al (111) surface. Bi therefore contributes to inhibit the formation of the hydroxyls on the Al metal surface, thereby allowing the clean metal to continuously react with water.  相似文献   
5.
The aim of this study was to use 3D modeling to differentiate not only among the four different types of lactose alpha-lactose monohydrate, spray-dried lactose, agglomerated lactose and lactose anhydrous but also between products from different manufacturers. Further "box-counting" fractal analysis of SEM images was done to gain additional information on tableting characteristics and tablet properties which can be found in the fractal structure. Twelve different materials from different manufacturers were analyzed for their powder-technological and physicochemical properties. They were tableted on an eccentric tableting machine at graded maximum relative densities and the recorded data, namely force, time, and displacement were analyzed by the 3D modeling technique. Tablet properties such as, elastic recovery, crushing force and morphology were analyzed. The results show that 3D modeling can precisely distinguish deformation behavior for different types of lactose and also for the same type of material produced with a slightly different technique. Furthermore, the results showed that the amorphous content of the lactose determined the compactibility of the material, which is due to a reversible exceeding of the glass transition temperature of the material. The three fractal dimensions DBW (box surface dimension), DWBW (pore/void box mass dimension), and DBBW (box solid mass dimension) are capable of describing morphological differences in lactose materials. Multivariate regression analysis showed that the fractal surface structure of the lactose-based materials is strongly correlated to tableting characteristics and tablet properties. Especially with regards to 3D modeling, it was found that the fractal indices can describe the parameters time plasticity d, pressure plasticity e, and fast elastic decompression, which is the inverse of omega. In addition, the 3D parameters are able to describe the powder and tablet fractal indices. In conclusion, the 3D modeling is not only able to characterize the compression process but it can also provide information on the final tablet morphology.  相似文献   
6.
Radiation and thermal curing of unsaturated polyester resins with styrene were investigated by combining differential thermal analysis with electric and mechanical relaxation techniques. A microprocessor controlled combined relaxation equipment of special construction was used. By radiation initiated curing the reaction was interrupted at different stages and the products were analyzed. Relaxation and simultaneous differential thermal measurements were also made during the course of gamma radiation and peroxide initiated thermal curing. By this way the shift of the characteristic transitions of the resin as a function of conversion could be studied. Also the change of the phase-structure of the resin caused by the reaction was monitored. By deconvolution of the dielectric spectrum band the physical structure was found to become heterogeneous by crosslinking. Besides the shift of the transition temperatures the oscillator strength of the dielectric transition was found to decrease with conversion. Electrical polarization and depolarization studies were also performed. A special intermittent load thermomechanical technique was used for separating elastic from viscous response of the sample subjected to external mechanical force. The transitions exhibited by the thermomechanical curves were found to shift to higher temperatures by crosslinking and the compliance plateaus decreased.  相似文献   
7.
Monolithic megaloporous carbon cryogels were examined for their potential applications as cathodic electrodes in secondary zinc–bromine cells. This work investigates the possibility of using their particular macroporous texture as microscopic bromine tanks in a zinc/bromine battery. The electrochemical behaviour of a cell based upon such a Br2 electrode was studied and discussed in terms of energy yields, energy storage capability and cycle life. Good storages (over 20 Wh kg−1) could be obtained during the first 2 h of cell charging for currents between 10 and 20 mA g−1. The energy yield remains almost constant during a fairly large number of cycles, basically for weak charges (e.g. 25 C g−1). Our findings show that the good cyclability of the cathodic electrode is a consequence of the liquid state of the active bromine phase.  相似文献   
8.
Transition metal halides are mostly used as dopants to improve the hydrogen storage properties of LiAlH4, but they will cause hydrogen capacity loss because of their relatively high molecular weights and reactions with LiAlH4. To overcome these drawbacks, active nano-sized TiH2 (TiH2nano) prepared by reactive ball milling is used to dope LiAlH4. It shows superior catalytic effect on the dehydrogenation of LiAlH4 compared to commercial TiH2. TiH2nano-doped LiAlH4 starts to release hydrogen at 75 °C, which is 80 °C lower than the onset dehydrogenation temperature of commercial LiAlH4. About 6.3 wt.% H2 can be released isothermally at 100 °C (800 min) or at 120 °C (150 min). The apparent activation energies of the first two dehydrogenation reactions of LiAlH4 are reduced by about 20 and 24 kJ mol−1, respectively. Meanwhile, the regeneration of LiAlH4 is realized through extracting the solvent from LiAlH4·4THF, which is obtained by ball milling the dehydrogenated products of TiH2nano-doped LiAlH4 in the presence of THF and 5 MPa H2. This suggests that TiH2 is also an effective catalyst for the formation of LiAlH4·4THF.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号