首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   15篇
工业技术   414篇
  2022年   3篇
  2021年   17篇
  2020年   14篇
  2019年   16篇
  2018年   15篇
  2017年   13篇
  2016年   10篇
  2015年   8篇
  2014年   13篇
  2013年   13篇
  2012年   19篇
  2011年   21篇
  2010年   9篇
  2009年   8篇
  2008年   24篇
  2007年   13篇
  2006年   6篇
  2005年   10篇
  2004年   8篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1982年   2篇
  1980年   3篇
  1977年   3篇
  1976年   7篇
  1974年   2篇
  1972年   4篇
  1971年   2篇
  1969年   3篇
  1966年   3篇
  1965年   8篇
  1964年   9篇
  1963年   7篇
  1962年   4篇
  1961年   3篇
  1960年   9篇
  1959年   6篇
  1958年   3篇
  1956年   4篇
  1955年   4篇
  1954年   14篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
1.
2.
Using thick and thin films instead of bulk functional materials presents tremendous advantages in the field of flexible electronics and component miniaturization. Here, a low-cost method to grow and release large-area, microscale thickness, freestanding, functional, ceramic foils is reported. It uses evaporation of sodium chloride to silicon wafer substrates as sacrificial layers, upon which functional lead titanate zirconate ceramic films are grown at 710?°C maximum temperature to validate the method. The freestanding, functional foils are then released by dissolution of the sacrificial sodium chloride in water and have the potential to be integrated into low-thermal stability printed circuits and flexible substrates. The optimization of the sodium chloride layer surface quality and bonding strength with the underlying wafer is achieved thanks to pre-annealing treatment.  相似文献   
3.
The densification of CaLa2S4 (CLS) powders prepared by combustion method was investigated by the use of Field-Assisted Sintering Technique (FAST) and Hot Pressing (HP). CLS powders were sintered using FAST at 1000°C at different pressures and heating rates and sintered by HP under 120 MPa from 800°C to 1100°C for 6 hours with a heating rate of 10°C/min. Comparison of both techniques was further realized by use of the same conditions of pressure, dwell time, and heating rate. Complementary techniques (XRD, SEM-EDS, density measurements, FTIR spectroscopy) were employed to correlate the sintering processes/parameters to the microstructural/compositional developments and optical transmission of the ceramics. Both sintering techniques produce ceramics with submicrometer grain size and relative density of about 99%. Nevertheless, HP is more suitable to densify CLS ceramics without fragmentation and also reach higher transmission than FAST. Transmission of 40%–45% was measured out of a possible maximum of 69% based on the Fresnel losses in the 8-14 μm window when HP is applied at 1000°C for 6 hours under 120 MPa. In both techniques, ceramics undergo reduction issues that originate from graphitic sintering atmosphere.  相似文献   
4.
This paper examines and compares the two loading systems and their associated energy and basic stress fields in elastic crustal rock mass for the cause of tectonic earthquakes. The first loading system is an external loading system and associated with the conventional earthquake cause hypothesis of active fault elastic rebounding. The second is a combined loading system where the first external loading system is added with a dense gas loading in the interior of deep crustal rock faults/defects. It is associated with the methane gas hypothesis for the cause of tectonic earthquakes. Five elastic stresses in rock solids with some idealized faults and caverns are presented to illustrate the similarities and differences of the stress fields and the possible rupture failure modes in association of the two loading systems. The theoretical results can show that any changes in the local stress concentrations due the external loading alone can be reflected and noticed in the corresponding stresses at the far field. On the other hand, any changes in the local stress concentrations due to the internal gas loading cannot be observed and distinguished in the tectonic stress field at the far distance. These theoretical results can be used to well explain the consensus of earthquake unpredictability with present technology. The theoretical results can further show that the external tectonic loading alone can only cause shear ruptures in crustal fault rocks with high compressive stresses, and such shear rupture or frictional failure is also difficult to occur because its shear plane has extremely high compressive normal stress. The combined loading can cause not only shear ruptures, but also tensile ruptures in crustal fault rocks, and such shear and tensile ruptures occur much easier since the rupture plane can have very low compressive or even high-tensile normal stress. It is argued that the earthquake energy is the volumetric expansion energy of dense gas mass escaped from the deep traps along crustal rock faults. The migration and expansion of the escaped dense gas mass in the crustal rock faults and defects cause the seismic body waves, the ground sounding, the seismic surface waves, the ground co-seismic ruptures and damages. Its rapid migration and expansion in thick water cause tsunamis in lakes and oceans. Its rapid migration and expansion in the atmosphere cause the sky to become cloudy. The dense methane gas is produced every day in the mantle and core of the Earth, migrates outward and accumulates and stores beneath the lower crustal rock in high compression. It forms a thin spherical layer of dense methane gas separating the cold crustal rocks and the hot mantle materials. Its leaking along deep faults or plate boundaries causes earthquakes and supplies to shallow gas and oil reservoirs beneath secondary traps in adjacent basins of the upper crustal rock mass.  相似文献   
5.
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000 °C to 1400 °C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. This biomass was used under its non-altered pristine form but also dried or torrefied. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature, oxidizing agent (H2O or CO2) or type of biomass feedstock on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400 °C.  相似文献   
6.
The structural and electrochemical properties of the double perovskite-type oxide, PrBaMnMoO6-δ, was investigated using neutron diffraction with in-situ conductivity measurement under a dry Argon atmosphere from 25 °C to 700 °C. A Rietveld refinement of the neutron diffraction data confirmed monoclinic symmetry in the P21/n space group. Rietveld refinement also confirms the unit cell parameters of a = 5.6567 (1) Å, b = 5.6065 (2) Å, c = 7.9344 (1) Å and β = 84.43° with reliable atomic positions and refinement factors (R-factors). Neutron diffraction data refinement shows two minor phases (<5%), an orthorhombic AB2O5 type phase of PrMn2O5 in the Pbam (No. 32) space group with unit cell parameters, a = 7.9672 (1) Å, b = 8.9043 (2) Å and c = 5.8540 (1) Å and a scheelite phase of BaMoO4 in the tetragonal I41/a (88) space group with the unit cell parameters, a = b = 5.9522 (1) Å, and c = 12.3211 (2) Å. Morphological images revealed a porous and intertwined microstructure. In-situ conductivity measurement shows that the total conductivity of this material was 130.84 Scm?1 at 700 °C.  相似文献   
7.
Erucic acid‐enriched oil, sought for industrial purposes, from rapeseed (agronomic plant) and rocket seeds (non‐agronomic plant) was extracted by three different processes: supercritical CO2, mechanical expression, and hexane extraction. Oil extraction yields were determined and the extracted oils were characterized for their fatty acid and phenolic compound compositions. Higher oil yields were achieved using hexane compared to mechanical expression and supercritical CO2 extractions. Fatty acid analysis indicated a higher content of erucic acid in rapeseed oil than in rocket oil. In addition, supercritical CO2 extraction allowed better recovery of phenolic compounds with high antioxidant activities. The most prominent identified polyphenols were vanillin, sinapic acid, syringic acid, and apigenin.  相似文献   
8.
Open-cathode air-breathing fuel cells have the advantage of reduced system complexity and simplified operation, as oxygen is taken directly from ambient air without the need for blowers/compressors. In this study, printed circuit boards (PCBs) are used as flow-field plates. The use of PCBs offers the potential for significant cost reduction due to their well-established manufacturing processing and low materials cost. This study investigates the effect of varying the cathode geometry (parallel and circular) and opening ratios (43%, 53% and 63%) on fuel cell performance using polarisation curves, electrochemical impedance spectroscopy (EIS) and thermal imaging. The results obtained indicate that circular openings afford lower Ohmic resistance than parallel flow-field designs, which helps improve contact between the gas diffusion layer and flow-field plate. However, flow-field plates with circular openings suffer from greater mass transport limitation effects. Likewise, greater opening ratios offer better mass transport but increased Ohmic resistance as a result of the reduced area of lands/ribs. The thermal imaging results reveal lower temperature in the middle of the fuel cell due to “bowing” of the printed circuit board flow field plates which reduces the local current density. A trade-off between these factors results in a design with a maximum area specific power density of 250 mW cm−2.  相似文献   
9.
Under the National Ambient Air Quality Standard (NAAQS) for airborne lead, measurements are conducted by means of a high-volume total suspended particulate matter (Hi-Vol TSP) sampler. In the decade between 1973 and 1983, there were 12 publications that explored the sampling characteristics and effectiveness of the Hi-Vol TSP, yet there persists uncertainty regarding its performance. This article presents an overview of the existing literature on the performance of the Hi-Vol TSP, and identifies the reported sampler effectiveness with respect to four factors: particle size (reported effectiveness of 7%–100%), wind speed (?36% to 100%), sampler orientation (7%–100%), and operational state (107%–140%). Effectiveness of the Hi-Vol TSP was evaluated with a solid, polydisperse aerosol in a controlled wind tunnel setting. Isokinetic samplers were deployed alongside the Hi-Vol TSP to investigate three wind speeds (2, 8, and 24 km h?1), three sampler orientations (0°, 45°, 90°), and two operational states (on, off) for aerosols with aerodynamic diameters from 5 to 35 µm. Results indicate that particle diameter was the largest determining factor of effectiveness followed by wind speed. Orientation of the sampler did not have a significant effect at 2 and 8 km h?1 but did at 24 km h?1. In a passive state, the Hi-Vol TSP was collected between 1% and 7% of available aerosol depending on particle size and wind speed. Results of this research do not invalidate results of previous studies but rather contribute to our overall understanding of the Hi-Vol TSP's size-selective performance. While results generally agreed with previous studies, the Hi-Vol TSP was found to exhibit less dependence on these four factors than previously reported.

© 2017 American Association for Aerosol Research  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号