首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   13篇
工业技术   197篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   12篇
  2016年   12篇
  2015年   13篇
  2014年   14篇
  2013年   13篇
  2012年   14篇
  2011年   13篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
1.
Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.  相似文献   
2.
3.
Palladium nanoparticles (Pd‐BNP) stabilized by a binaphthyl‐backbone can be efficiently used for the chemoselective reduction of aldehydes in the presence of hydrogen at room temperature in water. The Pd‐BNP catalyst is easily recovered and reused for five catalytic cycles.

  相似文献   

4.
A novel SiX–dipropargyl glycerol scaffold (X: H, F, or 18F) was developed as a versatile prosthetic group that provides technical advantages for the preparation of dimeric radioligands based on silicon fluoride acceptor pre‐ or post‐labeling with fluorine‐18. Rapid conjugation with the prosthetic group takes place in microwave‐assisted click conjugation under mild conditions. Thus, a bivalent homodimeric SiX–dipropargyl glycerol derivatized radioligand, [18F]BMPPSiF, with enhanced affinity was developed by using click conjugation. High uptake of the radioligand was demonstrated in 5‐HT1A receptor‐rich regions in the brain with positron emission tomography. Molecular docking studies (rigid protein–flexible ligand) of BMPPSiF and known antagonists (WAY‐100635, MPPF, and MefWAY) with monomeric, dimeric, and multimeric 5‐HT1A receptor models were performed, with the highest G score obtained for docked BMPPSiF: ?6.766 as compared with all three antagonists on the monomeric model. Multimeric induced‐fit docking was also performed to visualize the comparable mode of binding under in vivo conditions, and a notably improved G score of ?8.455 was observed for BMPPSiF. These data directly correlate the high binding potential of BMPPSiF with the bivalent binding mode obtained in the biological studies. The present study warrants wide application of the SiX–dipropargyl glycerol prosthetic group in the development of ligands for imaging with enhanced affinity markers for specific targeting based on peptides, nucleosides, and lipids.  相似文献   
5.
The nanocomposite of titanium‐di‐oxide (TiO2)/iodine (I2) in polyvinyl alcohol (PVA) matrix has been explored to be used in hydrogen peroxide (H2O2) sensing applications for the first time. The proposed nanocomposite can be easily casted in the form of thin film on glass substrates as well as free standing membranes. These nanocomposite films and membranes exhibit reduced resistance values and easily observable colour changes in the presence of H2O2. The films also exhibit significant quenching in photoluminescence emission properties upon H2O2 exposure. These sensor responses have been attributed to redox reactions at nanocomposite films and H2O2 interface. This study indicates an easy to fabricate, flexible and environmental friendly sensing platform for H2O2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42257.  相似文献   
6.
7.
The application of hydrocolloid gel particles is potentially useful in food, chemical, and pharmaceutical industries. Alginate gel particles are one of the more commonly used hydrocolloid gel particles due to them being biocompatible, nontoxic, biodegradable, cheap, and simple to produce. They are particularly valued for their application in encapsulation. Encapsulation in alginate gel particles confers protective benefits to cells, DNA, nutrients, and microbes. Slow release of flavors, minerals, and drugs can also be achieved by encapsulation in gel particles. The particle size and shape of the gel particles are crucial for specific applications. In this review, current methods of producing alginate gel particles will be discussed, taking into account their advantages, disadvantages, scalability, and impact on particle size. The physical properties of alginate gel particles will determine the effectiveness in different application conditions. This review will cover the current understanding of the alginate biopolymer, gelation mechanisms and factors affecting release properties, gel strength, and rheology of the alginate gel particle systems.  相似文献   
8.
Present paper reports the synthesis of nanostructured (Sn–Ti)O2 via physicochemical method, its characterization and performance as liquefied petroleum gas (LPG) sensor. The synthesized material was characterized using XRD that confirmed the formation of (Sn–Ti)O2 nanocomposite. Minimum crystallite size was found as 7 nm. The material was also investigated through SEM, DSC, FTIR, PL and UV–Vis spectrophotometer. Further, the pellet, thick and thin films were fabricated for the sensing analysis. Pellets (9 mm diameter, 4 mm thickness) of (Sn–Ti)O2 nanocomposite were made by hydraulic pressing machine by applying uniaxial pressure of 616 MPa, thick films (thickness ~2 µm) were made by screen printing technique and thin films were prepared using a Photo resist spinner unit. Further at room temperature, the pellet and films were exposed to LPG in a gas chamber under controlled conditions at room temperature and variations in resistance with the concentrations of LPG were observed. The maximum value of sensitivity of solid state pellet, thick and thin films based sensors were found 7, 9 and 39 for 5 vol% of LPG, respectively. Sensing characteristics were found to be reproducible, after 6 months of their fabrication, indicating the stability of the sensors.  相似文献   
9.
The processing parameters have been optimized to achieve highly pure and fully dense pellets of calcium cobalt oxide (Ca3Co4O9) from solid-state ball milled calcium carbonate and cobalt oxide mixtures, calcined at optimized temperature and time, and consolidated by hot-pressing. The microscopic, spectroscopic, and thermal analysis suggest samples with longer ball-milling time require less calcination time for synthesizing highly pure crystalline phases of Ca3Co4O9, and provide 99.2 ± 0.5% relative density.  相似文献   
10.
Cloud computing is a form of distributed computing, which promises to deliver reliable services through next‐generation data centers that are built on virtualized compute and storage technologies. It is becoming truly ubiquitous and with cloud infrastructures becoming essential components for providing Internet services, there is an increase in energy‐hungry data centers deployed by cloud providers. As cloud providers often rely on large data centers to offer the resources required by the users, the energy consumed by cloud infrastructures has become a key environmental and economical concern. Much energy is wasted in these data centers because of under‐utilized resources hence contributing to global warming. To conserve energy, these under‐utilized resources need to be efficiently utilized and to achieve this, jobs need to be allocated to the cloud resources in such a way so that the resources are used efficiently and there is a gain in performance and energy efficiency. In this paper, a model for energy‐aware resource utilization technique has been proposed to efficiently manage cloud resources and enhance their utilization. It further helps in reducing the energy consumption of clouds by using server consolidation through virtualization without degrading the performance of users’ applications. An artificial bee colony based energy‐aware resource utilization technique corresponding to the model has been designed to allocate jobs to the resources in a cloud environment. The performance of the proposed algorithm has been evaluated with the existing algorithms through the CloudSim toolkit. The experimental results demonstrate that the proposed technique outperforms the existing techniques by minimizing energy consumption and execution time of applications submitted to the cloud. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号