首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
工业技术   41篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Applied Intelligence - 3D Speckle tracking techniques are used to quantify cardiac deformation in 3D echocardiographic images. Elastic image registration methods are successful in solving 3D...  相似文献   
2.
The main focus of the current study is to evaluate the performance of elevated tanks under seismic loading. In this study, the finite element (FE) technique is used to investigate the seismic response of liquid-filled tanks. The fluid domain is modeled using displacement-based fluid elements. Both time history and modal analyses are performed on an elevated tank. Using the FE technique, impulsive and convective response components are obtained separately. Furthermore, the effect of tank wall flexibility and sloshing of the water free surface are accounted for in the FE analysis. In this study complexities associated with modeling of the conical shaped tanks are discussed. This study shows that the proposed finite element technique is capable of accounting for the fluid-structure interaction in liquid containing structures. Using this method, the study of liquid sloshing effects in tanks with complex geometries such as conical tanks is made possible. The results of this study show that the current practice predicts the response of elevated tanks with reasonable accuracy.  相似文献   
3.
4.
5.
The gas holdup is an important parameter that is needed for design and development of surface facilities and transportation pipelines in the field of petroleum engineering. There is no general model for prediction of this parameter in different systems and under different conditions. As a result, development of accurate and general models for prediction of this parameter in various situations is of great importance. This study presents new experimental gas holdup data in the kerosene+CO2 and kerosene+N2 systems. The experimental data were measured by using a bubble column setup. Moreover, a computer-based model namely PSO-ANFIS model is also developed for prediction of the gas holdup in different systems. A total of 818 experimental gas holdup data in various systems were utilized including the newly measured experimental data in the present work as well as experimental data from several published works in the literature. Results showed that the developed PSO-ANFIS model is accurate for prediction of experimental data with an R2 value of 0.998 and average absolute relative deviation (AARD%) of 3.4%.  相似文献   
6.
In this paper, an adaptive finite element analysis is presented for 3D modeling of non-planar curved crack growth. The fracture mechanical evaluation is performed based on a general technique for non-planar curved cracks. The Schollmann’s crack kinking criterion is used for the process of crack propagation in 3D problems. The Zienkiewicz-Zhu error estimator is employed in conjunction with a weighted SPR technique at each patch to improve the accuracy of error estimation. Applying the proposed technique to 3D non-planar curved crack growth problems shows significant improvements particularly at the boundaries and near crack tip regions. Several numerical examples are presented to illustrate the robustness of the proposed technique.  相似文献   
7.
The Earned Value technique is a crucial technique in analyzing and controlling the performance of a project which allows a more accurate measurement of both the performance and the progress of a project. This paper presents a new fuzzy-based earned value model with the advantage of developing and analyzing the earned value indices, and the time and the cost estimates at completion under uncertainty. As the uncertainty is inherent in real-life activities, the developed model is very useful in evaluating the progress of a project where uncertainty arises. A small example illustrates how the new model can be implemented in reality.  相似文献   
8.
Reduction of weight and increase of corrosion resistance are among the advantageous applications of aluminum alloys in automotive industry. Producing complicated components with several parts as a uniform part not only increases their strength but also decreases the production sequences and costs. However, achieving this purpose requires sufficient formability of the material. Tube hydroforming is an alternative process to produce complex products. In this process, the higher the material formability the more uniform will be the thickness distribution. In this research, tube hydroforming of aluminum alloy (AA1050) at various temperatures has been investigated numerically to study temperature effect on thickness distribution of final product. Also a warm hydroforming set-up has been designed and manufactured to evaluate numerical results. According to numerical and experimental results in the case of free bulging, unlike the constrained bulging, increase of the process temperature causes more uniform thickness distribution and therefore increases the material formability.  相似文献   
9.
In this paper, an automated adaptive remeshing procedure is presented for simulation of arbitrary shape crack growth in a 2D finite element mesh. The Zienkiewicz-Zhu error estimator is employed in conjunction with a modified SPR technique based on the recovery of gradients using analytical crack-tip fields in order to obtain more accurate estimation of errors. The optimization of crack-tip singular finite element size is achieved through the adaptive mesh strategy. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of computational algorithm in calculation of fracture parameters and prediction of crack path pattern.  相似文献   
10.
Feasibility study on optimized process conditions in warm tube hydroforming   总被引:1,自引:0,他引:1  
Feasibility study has been performed to estimate the optimized process conditions in warm tube hydroforming based on the simulated annealing optimization method. Precise prediction and control of process parameters play an important role in forming at warm conditions. Optimal pressure and feed loading paths are obtained for aluminium AA6061 tubes through the simulated annealing algorithm in conjunction with finite element simulations. Numerous axisymmetric geometries are investigated and the effects of expansion ratio, corner fillet to thickness ratio, and initial diameter to thickness ratio are studied. For the feasibility estimation, warm hydroforming experiments have been conducted on aluminum AA6061 under optimal designed conditions. The results show that the optimization procedure used in this research is a reliable and feasible tool in determination of optimal process conditions for the sound warm hydroforming process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号