首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
工业技术   2篇
  2021年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Soy protein is known for its eco-friendly, sustainable, and biodegradable qualities that are likely used as raw material in producing bioadhesive. However, soy protein-based adhesive are lacking in terms of adhesive strength and water-resistance compared to commercial formaldehyde-based adhesives such as phenol and urea-formaldehyde resin. Therefore, continuous research has been done to improve adhesive performance. This can be done via physical or modification methods, including the usage of cross-linking agents, structural modification, enzymatic modification, and the addition of additives. This review will cover these modification methods that give significant enhancement to the water-resistance and adhesive strength of soy protein-based adhesives.  相似文献   
2.
The objective of this investigation was to evaluate the properties of binderless particleboard manufactured from oil palm trunk as a function of press temperature. Particleboard samples were manufactured with a target density of 0.80 g/cm3 using press temperatures of 160 °C, 180 °C and 200 °C. The modulus of rupture, internal bond strength, water absorption and thickness swelling of the boards were determined based on Japanese Industrial Standards (JIS). Thermal gravimetric analysis, Fourier transform infrared spectroscopy and field-emission scanning electron microscopy coupled with energy dispersive X-ray analysis were employed to characterize the properties of the raw materials and the manufactured panels. The moduli of rupture of the samples were observed to increase with increasing press temperature, but they did not meet the standard values. However, the internal bond strength of the samples attained satisfactory values according to the JIS standard for all three temperature levels. Water absorption and thickness swelling of the boards decreased with increasing pressing temperature. Based on the findings in this study, increasing the pressing temperature may be considered a potential way of improving the properties of binderless particleboard.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号