首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
工业技术   101篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1982年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
Brella  M.  Taabouche  A.  Gharbi  B.  Gheriani  R.  Bouachiba  Y.  Bouabellou  A.  Serrar  H.  Touil  S.  Laggoune  K.  Boudissa  M. 《Semiconductors》2022,56(3):234-239
Semiconductors - In this work, TiO2 thin films were deposited onto glass substrate by two different techniques: sol–gel dip-coating (SG) and reactive DC magnetron sputtering (Sput). The...  相似文献   
3.
4.
This study compares two SOFC/GT (solid oxide fuel cell with gas turbine) hybrid systems to that of two standalone SOFC systems via eco-technoeconomic analyses that account for long-term degradation effects. Four cases were examined: 1) standalone SOFC plant without a steam bottoming cycle; 2) standalone SOFC plant with a steam bottoming cycle; 3) SOFC/GT hybrid plant without a steam bottoming cycle; and 4) SOFC/GT with a steam bottoming cycle. This study employed a real-time 1D SOFC model with an empirical degradation calculation integrated with steady-state balance-of-plant models. Simulations used Matlab Simulink R2017a, Aspen Plus V10, and Python 3.7.4 with a pseudo steady-state approach. The results showed that, with some trade-offs, the SOFC/GT hybrid plant with the steam bottoming cycle is the best option, with an overall efficiency of 44.6% LHV, an LCOE (levelized cost of electricity) of $US 77/MWh, and a CCA (cost of CO2 avoided) of -$US 49.3/tonneCO2e. The sensitivity analysis also indicated that SOFC/GT hybrid plants were less sensitive to SOFC price compared to standalone SOFC plants. The sensitivity analysis indicated that using a larger gas turbine and replacing the SOFC stack less frequently was the better design choice for the SOFC/GT hybrid plant.  相似文献   
5.
Ternary PBAT/PVC/C30B nanoblends were successfully prepared via melt blending process at 130 °C and characterized by different techniques. The properties of the elaborated PBAT/PVC/C30B nanoblends were compared with those of the nonfilled PBAT/PVC blends to examine the C30B effects on the structure and properties of PBAT/PVC/C30B nanoblends. FTIR spectra revealed the presence of specific interactions between C=O of PBAT and acidic hydrogen of PVC, supporting the formation of miscible nanoblends. The PBAT/PVC/C30B morphology was investigated by both X-ray diffraction and transmission electron microscopy analyses. It was suggested the formation of mixed intercalated/partially exfoliated structures. Differential scanning calorimetry thermograms of PBAT/PVC/C30B nanoblends exhibited a single T g and a full disappearance of the PBAT melting endotherm, confirming the complete compatibilization between PVC and PBAT. It was found that the T g of the nanoblends were higher than those of the pristine blends due to their mixed intercalated/partially exfoliated structures. PBAT and PVC chains would be confined in a same C30B gallery causing a reduction of the chain mobility. Nanoblends showed a reduction of their thermal stability compared to their pristine blends, as a result of the catalytic effect of the C30B in the thermal degradation process. Tensile measurements displayed an improvement of mechanical properties for the ternary PBAT/PVC/C30B nanoblends relative to their virgin blends due to the insertion of clay particles into composite matrix.  相似文献   
6.
The phase behaviour of binary nematogen mixtures of side‐chain liquid crystal crosslinked polymers and low molecular weight liquid crystals is investigated with particular emphasis on the effects of nematic coupling. The cross nematic quadrupole parameter ν12 is assumed to be proportional to the geometric average of ν11 and ν22 characteristic of single nematogens. In the weak coupling limit, the proportionality constant is lower than 1, and the phase diagram exhibits a reduced miscibility of the nematogens. In the case of strong coupling, the proportionality constant exceeds 1 resulting in higher miscibility. This is characterized by a nematic order that extends to temperatures above the upper nematic–isotropic transition temperature. A wide region of miscibility emerges showing a single nematic phase. Nematogens having similar nematic–isotropic transition temperatures exhibit different phase properties from systems with widely separated transition temperatures. Effects of the polymer volume fraction at crosslinking, rubber elasticity parameters of the network, and the Flory–Huggins interaction parameter on the equilibrium phase diagram of these systems are discussed. © 2001 Society of Chemical Industry  相似文献   
7.
Surface tracking on solid insulators is one of the most severe breakdown mechanisms. Accurate assessment of real insulation conditions can be achieved by using the statistical techniques that assist the measurement and monitoring of contamination severity, flashover voltage and leakage current.To address the uncertainties that surround the exact physical mechanisms underlying the mathematical models, it has been shown that it is possible to include in the assessment of insulator performance contamination accumulation that is predicted by using a short historical of chemical components and atmospheric conditions. The results from this work are useful to predict the contamination severity, flashover voltage as a function of contamination severity, leakage current as a function of applied voltage, arc length and contamination severity, and especially to predict the flashover current.  相似文献   
8.
The forthcoming introduction of lower standards for arsenic in drinking water requires new technologies for arsenic removal. We report the development of an electrochemical unit for remediating domestic water supplies for homes without municipally treated water. Electrolysis in a two‐anode system provides oxidants to convert As(III) to As(V) in situ, and a sacrificial anode to deliver iron into solution. Conditioning tanks after each electrolysis step ensure completion of the chemical reactions. At the pH of domestic water, As(V) co‐precipitates with Fe(OH)3; subsequent filtration leaves <10 ppb of inorganic arsenic in solution.  相似文献   
9.
Hydrogen is an ideal energy carrier which is considered for future transport, such as automotive applications. In this context storage of hydrogen is one of the key challenges in developing hydrogen economy. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Chemical or physically combined storage of hydrogen in other materials has potential advantages over other storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties. The present review reports recent developments of metal hydrides on properties including hydrogen-storage capacity, kinetics, cyclic behavior, toxicity, pressure and thermal response. A group of Mg-based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on-board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system and as well as by ball-milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower decomposition temperatures, however, the state-of-the-art materials are still far from meeting the aimed target for their transport applications. Therefore, further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides.  相似文献   
10.
Oxyfuel combustion is seen as one of the major options for CO2 capture for future clean coal technologies. The paper provides an overview on research activities and technology development through a fundamental research underpinning the Australia/Japan Oxyfuel Feasibility Project. Studies on oxyfuel combustion on a pilot-scale furnace and a laboratory scale drop tube furnace are presented and compared with computational fluid dynamics (CFD) predictions. The research has made several contributions to current knowledge, including; comprehensive assessment on oxyfuel combustion in a pilot-scale oxyfuel furnace, modifying the design criterion for an oxy retrofit by matching heat transfer, a new 4-grey gas model which accurately predicts emissivity of the gases in oxy-fired furnaces has been developed for furnace modelling, the first measurements of coal reactivity comparisons in air and oxyfuel at laboratory and pilot-scale; and predictions of observed delays in flame ignition in oxy-firing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号