首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
工业技术   37篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1984年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Silicones are widely used for electrical insulation owing to their high dielectric strength and thermal stability. However, recent studies revealed insufficient stability of silicone for high‐temperature applications. To study the effect of Al2O3 fiber on silicone stability, we measured the dielectric strength of unfilled silicone and Al2O3/silicone composites as a function of aging time at 250°C in air and analyzed data by Weibull probability distribution to determine characteristic dielectric strength (E0) and shape parameter (β). Prior to aging, unfilled silicone and composites had similar behavior, with E0 at about 20 kV/mm and β > 15. During aging, unfilled silicone developed both micro‐ and macrocracks, with β dropped below five in 240 h and E0 decreased significantly. Composites developed microcracks, with β dropped below 5 in longer time and E0 remained almost constant. Addition of Al2O3 slowed down crack growth in silicone matrix, resulting in longer lasting high‐temperature dielectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41170.  相似文献   
2.
This paper proposes a new soft-transition control strategy for a three-phase zero-current-transition (ZCT) inverter circuit. Each phase leg of the inverter circuit consists of an LC resonant tank, two main switches, and two auxiliary switches. The proposed strategy is realized by planning the switching patterns and timings of these four switches based on the load current information. It enables all the main switches and auxiliary switches to be turned on and turned off under zero-current conditions, and achieves a near zero-voltage turn-on for the main switches. Compared with existing ZCT strategies, the diode reverse recovery current and switching turn-on loss are substantially reduced, the current and thermal stresses in the auxiliary devices are evenly distributed over every switching cycle, and the resonant capacitor voltage stress is reduced from twice the DC bus voltage to 1.3-1.4 times the DC bus voltage. The proposed strategy is also suitable for three-phase power-factor-correction (PFC) rectifier applications. The operation principles, including a detailed analyst based on the state-plane technique, and a design rule are described in this paper. The circuit operation is first verified by a computer simulation, and is then tested with a 50-kW three-phase inverter to the full power level together with a three-phase induction motor in a closed-loop speed/torque control. Significant reductions in switching losses and voltage/current stresses over existing techniques have been experimentally demonstrated  相似文献   
3.
Currently, assemblies of power semiconductor switches and their associated drive circuitry are available in modules. From a few 100 watts downward, one finds silicon monolithic technology as the integration vehicle, while upward into the multi-kilowatt range, mixed mode module construction is used. This incorporates monolithic, hybrid, surface mount and wirebond technology. However, a close examination of the applications in motor drives and power supplies indicates that there has been no dramatic volume reduction of the subsystem. The power semiconductor modules have shrunk the power switching part of the converter, but the bulk of the subsystem volume still comprises the associated control, sensing, electromagnetic power passives and interconnect structures. The paper addresses the improvement of power processing technology through advanced integration of power electronics. The goal of a subsystem in a module necessitates this advanced integration. The central philosophy of this technology development research is to advance the state of the art by providing the concept of integrated power electronics modules (IPEMs). The technology underpinning such an IPEM approach is discussed. The fundamental functions in electronic power processing, the materials, processes and integration approaches and future concepts are explained.  相似文献   
4.
Control of circulating current in two parallel three-phase boost rectifiers   总被引:5,自引:0,他引:5  
One unique feature in parallel three-phase converters is a potential zero-sequence circulating current. To avoid the circulating current, most present technology uses an isolation approach, such as transformers or separate power supplies. This paper proposes a parallel system where individual converters connect both AC and DC sides directly without additional passive components to reduce size and cost of the overall parallel system. In this case, the control of the circulating current becomes an important objective in the converter design. This paper: (1) develops an averaged model of the parallel converters based on a phase-leg averaging technique; (2) a zero-sequence model is then developed to predict the dynamics of the zero-sequence current; (3) based on the zero-sequence model, this paper introduces a new control variable, which is associated with space-vector modulation; (4) a strong zero-sequence current control loop is designed to suppress the circulating current; and (5) simulation and experimental results validate the developed model and the proposed control scheme.  相似文献   
5.
This paper explores the fundamental limitations of the neutral-point voltage balancing problem for different loading conditions of three-level voltage source inverters. A new model in the DQ coordinate frame utilizing current switching functions is developed as a means to investigate theoretical limitations and to offer a more intuitive insight into the problem. The low-frequency ripple of the neutral point caused by certain loading conditions is reported and quantified  相似文献   
6.
7.
This paper presents some modified topologies of the neutral-point-clamped converter. In all of them, the main change consists of adding a fourth leg, which is based on the flying-capacitor converter structure. The aim of this additional leg is to provide the converter with fault tolerance. Furthermore, during normal operation mode, this leg is able to provide a stiff neutral voltage. Consequently, the low-frequency voltage oscillations that appear at the neutral point of the standard three-level topology in some operating conditions no longer exist. As a result, the modulation strategy of the three main legs of the converter does not have to take care of voltage balance, and it can be designed to either achieve optimal output voltage spectra or improve the efficiency of the converter. Simulation and experimental results are presented to show the viability of this approach both under normal operation mode and in the event of faults.  相似文献   
8.
A design optimization tool is developed for a three-phase voltage source inverter (VSI) with diode frontend rectifier. The insulated gate bipolar transistor (IGBT)-based pulsewidth modulation (PWM) voltage source inverter with diode front-end rectifier has become the converter of choice for three-phase ac-fed general-purpose industrial motor drives. The converter power stage, which mainly consists of the front-end rectifier, the inverter, the dc link capacitor, the harmonic and electromagnetic interference (EMI) filter, and the thermal management system, as shown in Figure 1 with a motor load, is the primary contributor to the overall converter cost and size. Since there are interdependencies and tradeoffs among components or subsystems in the power converter, it is very desirable to have a systematic methodology and tool for achieving a cost-optimized or size-optimized converter design while meeting the system performance requirement. A design tool will also reduce the development cycle and effort.  相似文献   
9.
The effects of linear imbalances and nonlinear loads on the voltage balance of the neutral-point-clamped converter are described in this paper. The study reveals that a negative sequence of output currents (linear imbalance) may produce additional low-frequency oscillations to the neutral-point voltage. Similar consequences are produced by odd-order current harmonics from a nonlinear load, while even-order harmonics can cause the neutral-point voltage to shift. Furthermore, the second, fourth, and eighth output current harmonics might produce instability to the neutral-point voltage. The second and fourth harmonics are the worst components. The maximum amplitudes of these harmonics superposed to the current fundamentals that the system can tolerate are described. Simulated and experimental examples are presented.  相似文献   
10.
This paper presents a 100 kW three-phase pulse-width modulated (PWM) boost rectifier that serves as the front-end power source for a DC distributed power system. A zero current transition (ZCT) soft-switching technique is applied to achieve greater performance in this high-power converter. This ZCT soft-switching technique assists the turn-on as well as the turn-off of the main and auxiliary insulated gate bipolar transistor (IGBT) switches. An issue about the implementation of the ZCT soft-switching technique in three-phase applications is discussed. A space vector modulation (SVM) scheme suitable for high power applications with high performance is identified. Experimental results demonstrate that high performance is achieved, in terms of wide control bandwidth, low total harmonic distortion (THD), unity power factor and high efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号