首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
工业技术   11篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
排序方式: 共有11条查询结果,搜索用时 92 毫秒
1.
为进一步开发新型环境友好型光芬顿催化剂,基于反应烧结法制备了铁铝尖晶石,探究了铁铝尖晶石对罗丹明B染料的光芬顿催化性能和降解机理。结果表明:试样中物相组成为具有Fe2+和Fe3+复合价态的高纯铁铝尖晶石。通过调整pH值、催化剂质量浓度和H2O2剂量,铁铝尖晶石催化罗丹明B呈现不同的降解效率。当工艺条件为pH=3.14、1.0 g/L FeAl2O4和2%H2O2时,降解效率达到90.71%,TOC去除率达76.46%。经过4次循环使用后,铁铝尖晶石仍然保持良好的稳定性。反应烧结法合成的铁铝尖晶石是一种具有潜在价值的光芬顿催化剂,在染料废水处理中具有应用前景。  相似文献   
2.
以X射线衍射仪、扫描隧道电子显微镜、能量散射光谱仪等手段对在悬浮预热器内筒上使用前后的反应烧结碳化硅陶瓷进行分析,研究该陶瓷应用于悬浮预热器上的损毁机制.碳化硅陶瓷中残存金属硅和表面的碳化硅在高温使用工况下首先氧化成SiO2,SiO2在K2O (g)、Na2O (g)、KCl (g)、Na Cl (g)等蒸气以及氯化物作用下黏度降低,形成覆盖于陶瓷表面的氧化层,继而被高速的气固流体冲蚀和磨损掉,并导致新的界面出现.如此循环,使碳化硅陶瓷的外侧逐渐变薄和断裂,直至损毁.提高陶瓷的致密性和降低残余硅含量是改进反应烧结碳化硅陶瓷在悬浮预热器中使用性能的有效途径.   相似文献   
3.
以酚醛树脂为结合剂,分别以100wt%烧结刚玉细粉、100wt%电熔刚玉细粉和50wt%烧结刚玉加50wt%电熔刚玉混合细粉为原料制备试样,试样在N2气氛下经1 500℃和1 600℃烧成,对烧后试样进行XRD、SEM和EDAS表征分析。结果表明:1 500℃烧后试样中生成了γ-AlON(Al5O6N)和12H多型体(Al6O3N4),1 600℃烧后试样中生成了γ-AlON(Al5O6N)、21R多型体(Al7O3N5)和16H多型体(Al8O3N6)。1 600℃烧成试样中生成的阿隆(AlON)含量较1 500℃烧成试样显著增多。在相同温度下,50wt%烧结刚玉加50wt%电熔刚玉混合细粉试样中生成的AlON含量最多,100wt%电熔刚玉细粉试样次之,100%烧结刚玉细粉试样中生成的AlON含量最少。分析了AlON的形成机制并建立了刚玉细粉与碳的反应模型。  相似文献   
4.
以Fe2O3、Al2O3和Si O2为原料,按照Fe O和Al2O3质量比为40.8:59.2配料,并在合成体系中引入质量分数为1%的二氧化硅,在高纯氮气下于1 600℃保温4 h。用X射线衍射、扫描电子显微镜、能谱和透射电子显微镜等对试样进行了表征,利用Fe O-Al2O3-Si O2三元相图对二氧化硅的存在状态进行了分析。结果表明:引入的二氧化硅没有进入铁铝尖晶石晶格,而是以Fe O-Al2O3-Si O2三元组分的非晶态形式存在于铁铝尖晶石晶粒间。在二氧化硅质量分数为1%时,含Si O2组分的非晶相呈不连续状态分布,未改变铁铝尖晶石晶粒间的直接接触。  相似文献   
5.
以烧结刚玉、α-Al_2O_3微粉、金属铝粉、高纯镁砂[加入量分别为3%(质量分数)、6%、15%]为原料,酚醛树脂为结合剂,制备Al–MgO–Al_2O_3系复合材料。样品成型后经过200℃烘干后在1 300℃氮气气氛下烧结。结果表明:添加金属铝粉后样品常规物理性能显著改善。样品中的主晶相为α-Al_2O_3和Mg Al_2O_4,有金属铝残留。镁砂对金属铝–烧结刚玉耐火材料物相组成影响大,当镁砂加入量为3%时形成Al_4O_4C相,镁砂加入量为6%或15%时,新相为Al_4C_3,未检测到Al_4O_4C相,镁砂添加量为15%时能检测到方镁石相。镁砂加入量大于或等于6%时,α-Al_2O_3颗粒或细粉表面形成的镁铝尖晶石包裹刚玉结构,将α-Al_2O_3表面包覆,阻断Al_4C_3与α-Al_2O_3反应生成Al_4O_4C。最后建立了该体系中新相形成机理的反应模型。  相似文献   
6.
借助XRD、SEM和能谱分析仪等手段,研究了1 600℃煅烧中低品位矾土制备的钛酸铝/莫来石(Al_2TiO_5ss/3Al_2O_3·2SiO_2ss)复合材料经1 200℃保温12h后结构的稳定性。结果表明:高温煅烧中低品位矾土后,其合成材料的结晶物相组成为3Al_2O_3·2SiO_2ss、Al_2TiO_5ss和少量残存的方石英;Fe~(3+)或Ti~(4+)离子以不同形态赋存于结晶相(3Al_2O_3·2SiO_2ss和Al_2TiO_5ss)和非晶相。含Fe~(3+)/Ti~(4+)离子的3Al_2O_3·2SiO_2ss将Al_2TiO_5ss结晶相分割,使其蜷缩其间,并抑制Al_2TiO_5ss的分解;高温下,二者因组成元素相近而致使晶界融合,进而共同构建了体系牢固的致密骨架结构。由3Al_2O_3·2SiO_2ss和Al_2TiO_5ss等高温物相构成的致密结构将非晶相挤压于空隙结构的3Al_2O_3·2SiO_2ss晶间,避免了低熔点相富集带来的不利影响,进而赋予该Al_2TiO_5ss/3Al_2O_3·2SiO_2ss复合材料良好的结构稳定性。  相似文献   
7.
以电熔镁砂、鳞片石墨和金属铝粉为原料,酚醛树脂为结合剂,在氮气气氛中,经1300~1600℃热处理后制备了镁碳耐火材料.分析了镁碳耐火材料的物相重构和微结构演变,揭示了化学气相沉积反应形成两种不同形貌氧化镁的机制.结果表明:在1300~1500℃时,试样的非氧化物组成为碳化铝(Al4C3)、氮化铝(AlN)和镁铝氮化物...  相似文献   
8.
以闪速燃烧法合成的不同粒度的氮化硅铁颗粒(w(Si)=48.76%,w(N)=30.65%,w(Fe)=14.15%,w(O)=2.2%,w(Al)=0.8%)作为骨料,以粒度≤0.088 mm的氮化硅铁粉和Si粉(w(Si)=98.22%,w(Al)=0.15%)作为细粉,经混料、困料、成型、干燥和1 450℃保温24 h氮化烧成等工艺,制备了以Si_3N_4为主晶相的新型氮化硅质耐火材料。检测结果表明:所制备试样的显气孔率为29.2%,体积密度为2.39g·cm~(- 3),常温耐压强度为151 MPa,常温抗折强度为40.3 MPa,1 400℃高温抗折强度为12.2 MPa;其物相组成(w)为:β-Si_3N_472.03%,α-Si_3N_49.20%,Si_2N_2O 6.23%,Fe3Si 11.60%,Si O_20.94%。在高温条件下,随着体系中氧分压的不断降低,絮状的Si_2N_2O和Si_3N_4结合相主要由体系气相组分中的Si O、Si蒸气与N2、O_2反应形成。  相似文献   
9.
以电熔镁砂、α-Al_2O_3微粉、板状刚玉、白刚玉、金属铝及高纯镁砂为原料,铝酸镁溶胶为结合剂,氮气条件下1 700℃保温4 h分别制备了MgO基和Al_2O_3基Al-MgO-Al_2O_3复合材料。研究了氮气低氧分压条件下MgO和Al_2O_3稳定性差异对Al-MgO-Al_2O_3复合材料微观结构的影响并揭示了MgO基和Al_2O_3基中MgAl ON形成机理。结果表明:在氮气低氧分压条件下,MgO比Al_2O_3更不稳定;在1 000℃以上随着温度的升高,体系MgO和Al_2O_3反应形成MgAl_2O_4,随着温度的升高,C-O_2反应的进行,体系内氧分压逐渐降低,MgO不稳定,分解为Mg(g)和O_2(g)。在MgO基体系中,MgO分解量较多,导致局部氧分压升高,金属Al部分将被氧化成Al_2O(g),与N_2(g),Mg(g)和O_2(g)发生反应,生成片状MgAl ON:Al_2O(g)+O_2(g)+N_2(g)+Mg(g)→MgAl ON(s)。而在Al_2O_3基体系中,由于MgO分解量减少,氧分压较低,高温下金属Al转变成Al(g),与N_2(g),Mg(g)和O_2(g)反生反应生成板片状MgAl ON:Al(g)+O_2(g)+N_2(g)+Mg(g)→MgAl ON(s)。  相似文献   
10.
研究了高纯氮气下先后进行580℃保温8 h、1 700℃保温3 h热处理后Al–MgAl2O4复合材料的物相组成和反应机理。结果表明:经580℃保温8 h后,Al–MgAl2O4复合材料形成分层现象,即外层区含金属铝–氮化铝壳核结构。当温度升至某一特定值时,金属铝–氮化铝壳核结构破裂,金属铝Al(l/g)溢出/逸出,与N2和O2分别反应生成AlN和Al2O(g),促进化学计量比的镁铝尖晶石(MgAl2O4)分解形成富氧化铝的镁铝尖晶石(Al2O3-rich spinel)和镁蒸气(Mg(g))。一方面,AlN与富氧化铝的镁铝尖晶石形成MgAlON尖晶石;另一方面,AlN与Mg(g)和O2发生固溶体反应生成氮化铝固溶体,(Mg,Al)(N,O)。内层区的材料物相组成不同于外层区,含有许多由气–气反应Al2O(g)+O2(g)+N2(g)+Mg(g)→MgAlON(s)或Al(g)+O2(g)+N2(g)+Mg(g)→MgAlON(s)生成的片状MgAlON;此外,内层区富氧化铝的镁铝尖晶石没有进一步转变为MgAlON尖晶石。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号