首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   22篇
  国内免费   41篇
工业技术   182篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   13篇
  2013年   16篇
  2012年   16篇
  2011年   7篇
  2010年   22篇
  2009年   13篇
  2008年   14篇
  2007年   6篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   6篇
  1998年   7篇
  1997年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
1.
采用差示扫描量热法(DSC)和真空安定性实验(VST),对N-氧化3'3-偶氮双(6-氨基-1,2,4,5-四嗪)(DAATO_(3.5))与复合改性双基(CMDB)推进剂常用单组分之间的相互作用和相容性进行了研究。采用70℃推进剂固化实验,考察了DAATO_(3.5)与CMDB推进剂药浆多组分混合体系的相容性。DSC研究结果表明,DAATO_(3.5)与硝化棉(NC)、硝化甘油(NG)、奥克托今(HMX)、3,4-二硝基呋咱基氧化呋咱(DNTF)、铝粉(Al)、吉纳(DINA)、炭黑(C.B)和1,3-二甲基-1,3-二苯基脲(C2)之间没有明显的相互作用,相容性较好。DAATO_(3.5)与黑索今(RDX)和六硝基六氮杂异戊兹烷(CL-20)存在较为明显的相互作用;与间苯二酚(Res)之间存在强烈的相互作用,Res对DAATO_(3.5)的峰温没有影响但会显著改变DAATO_(3.5)的分解峰型;高氯酸铵(AP)对DAATO_(3.5)的分解峰温没有明显的影响;DAATO_(3.5)可使AP的起始分解温度从310℃降至275℃,并使AP的低温分解峰和高温分解峰合并成一个分解单峰,分解峰温较AP的高温分解峰温下降52.9℃。VST实验结果表明,DAATO_(3.5)与AP相容,与RDX属于中等反应,与Res不相容。推进剂固化实验结果表明,DAATO_(3.5)与CMDB推进剂多组分混合体系在70℃实际工艺条件下可以安全固化,形成的含DAATO_(3.5)的CMDB推进剂均匀致密,表明DAATO_(3.5)可应用于CMDB推进剂中。  相似文献   
2.
自行设计并合成了一种含有氟偕二硝基的新型高能增塑剂3,4-二(3-氟偕二硝基-4-氧)呋咱.通过FT-IR、13C NMR、19F NMR、元素分析、DSC等分析手段进行了结构表征.基于计算的标准生成焓以及实测的密度,采用Kamlet-Jacobs方程计算了3,4-二(3-氟偕二硝基-4-氧)呋咱的爆轰性能,并与常用增塑剂:硝化甘油(NG)和二(氟偕二硝基)甲醛(FEFO)和3,3'-二硝基双呋咱醚(FOF-1)的爆轰性能进行了对比.结果表明,3,4-二(氟偕二硝基-4-氧)呋咱具有热稳性好(分解温度197.8℃)、密度大(1.88 g·cm-3)、熔点低(50℃)和能量水平高等特点,是一种综合性能优异的含能增塑剂.  相似文献   
3.
针对单室双推力发动机装药在低温点火工况下结构完整性,为了求解损伤的热粘弹性有限元模型,采用增量有限元方法,获取了装药内部的应力应变场.研究表明,在固化降温时,人工脱粘层对装药头部与尾部起到应力释放的作用,避免了装药与绝热层界面的破坏;同时,装药内部Mises应力值较大的部位是过渡段翼尖处与圆柱段表面.在点火时刻,装药环向应变的值较大部位是圆柱段表面.最后,采用文中方法,可应用于指导发动机装药设计与安全评估.  相似文献   
4.
综述了聚叠氮缩水甘油醚(GAP)的性能及应用等方面的最新进展。近年来研究的GAP粘合剂主要包括线型GAP、支化GAP和GAP四醇。对GAP粘合剂在高能推进剂、低特征信号推进剂、燃气发生剂及低易损弹药等方面的应用进行了分析。  相似文献   
5.
有机铜盐对RDX-CMDB推进剂的燃烧性能和高压热分解的影响   总被引:1,自引:1,他引:0  
研究了三种有机铜盐燃烧催化剂β-雷索辛酸铜(β-Cu)、3-硝基-1,2,4三唑-5-酮铜盐(NTO-Cu)和2,4-二硝基咪唑铜(NI-Cu)对RDX-CMDB推进剂不同压强下的燃烧性能和热分解的影响。结果表明,三种有机铜盐燃烧催化剂对RDX-CMDB推进剂的燃烧性能和差示扫描量热法(DSC)特征量有一定影响;β-Cu、NTO-Cu和NI-Cu三种有机铜盐可使RDX-CMDB推进剂热分解的第一个分解峰温Tp1提前1~4℃,并将第二个分解峰温Tp2提前5~11℃;RDX-CMDB推进剂的燃速和DSC特征量随压强的升高而增大,在1~10MPa压强下该类推进剂的燃速与DSC特征量呈线性相关。  相似文献   
6.
以3,4-二氰基氧化呋咱和叠氮化钠为原料,以水做溶剂,在ZnCl2催化作用下,经环化反应合成了3,4-双(四唑-5-基)氧化呋咱,总收率达91%。采用红外光谱、核磁共振、元素分析、X射线单晶衍射进行了结构表征。结果表明,晶体属于正交晶系,空间群为P212121,晶体学参数:a=6.1172(14), b=9.657(2), c=14.220(3), V=840.0(3)3, Z=4, Dc=1.76 g·cm-3,F(000)=448, μ=0.147 mm-1, S=1.031, R1=0.008,wR2=0.2523。3,4-双(四唑-5-基)氧化呋咱分子基本在一个平面,表明分子中存在强烈的共轭效应。同时,分子中氮原子之间存在大量的弱键,能够提高化合物的密度和热稳定性。  相似文献   
7.
针对3-硝基-1,2,4-三唑-5-酮(NTO)硝化过程中产生大量废酸导致“三废”综合治理成本高的问题,通过向废酸中补加少量工业浓硝酸制成质量分数为70%的硝酸溶液作为硝化剂,硝化1,2,4-三唑-5-酮(TO),循环合成目标化合物NTO。采用红外光谱、核磁共振光谱、元素分析对其进行了结构表征。考察了硝化剂用量、反应时间、反应温度对产品的影响,优化了硝化反应条件,确定硝化的最佳反应条件为: n(TO)n(HNO3)=16,反应温度60~65 ℃,反应时间1 h,纯度可达99.9%。废酸循环利用10次以上,平均收率82%,硝酸用量减少了67.6%。   相似文献   
8.
DNTF的核磁表征及理论研究   总被引:1,自引:1,他引:0  
为了完善3,4-双(4′-硝基呋咱-3′-基)氧化呋咱(DNTF)的核磁表征,采用NMR实验与GIAO-NMR理论计算相结合的方法区分并归属13C 和15N的化学位移。采用二甲基亚砜(DMSO-d6)、丙酮(Acetone-d6)和氯仿(CDCl3)为溶剂,进行了DNTF的一维13C NMR和15N NMR实验,并在DMSO-d6中获得DNTF的所有核磁信号。采用二维INADEQUATE实验完成了13C NMR 的归属。采用高斯09程序,在DFT-B3LYP/6-311+G(2d, p)水平上优化了DNTF结构,用GIAO方法在不同基组上计算了13C NMR和15N NMR的化学位移,计算结果与实验值一致性较好。结果表明,受氧化呋咱环上氧原子O(22)吸电子作用的影响,C(9)与C(13)的化学位移出现较大的差别,与C(13)相比,C(9)出现在高场。  相似文献   
9.
1,1'-二羟基-5,5'-联四唑二羟胺盐的合成与性能   总被引:1,自引:0,他引:1  
以二氯乙二肟为原料,经取代反应、环化反应和复分解反应合成了1,1'-二羟基-5,5'-联四唑二羟胺盐(HATO),总收率为81.7%。研究以未经干燥的二叠氮基乙二肟为中间体,提高了操作的安全性,采用溶解度较大的锂盐为中间体,提高了复分解反应的收率。对HATO的热稳定性、机械感度、形貌和粒度分布进行了研究。结果表明,HATO的热分解峰温为249.14℃(10℃·min-1),放气量为0.3 mL·g-1(100℃,48 h),撞击爆炸概率为16%(10 kg落锤),特性落高为100 cm(5 kg落锤),摩擦爆炸概率为24%(3.92 MPa,90°),粒度为334μm。  相似文献   
10.
硝基呋咱/CMDB推进剂能量特性   总被引:1,自引:1,他引:0  
根据最小自由能法,采用NASA-CEA软件,研究了六种硝基呋咱化合物:3-硝基呋咱(NF)、3,4-二硝基呋咱(DNF)、3-硝氨基-4-硝基呋咱(NNF)、3-硝氨基-4-硝基呋咱铵盐(ANNF)、3-硝氨基-4-硝基呋咱肼盐(HNNF)和3-硝氨基-4-硝基呋咱羟胺盐(HANNF)的能量特性。研究了硝基呋咱化合物含量对复合改性双基(CMDB)推进剂能量特性的影响和压强对硝基呋咱/CMDB推进剂能量特性的影响。结果表明,HANNF和HNNF单元推进剂的比冲高于RDX,分别为2744.8 N·s·kg-1和2802.2 N·s·kg-1。六种硝基呋咱化合物使CMDB推进剂的比冲大幅提高,其中HNNF和HANNF使CMDB推进剂的比冲分别提高74.6 N·s·kg-1和91 N·s·kg-1。六种硝基呋咱/CMDB推进剂的比冲均随压强升高而增加。比冲受压强影响顺序为DNFNNFHANNFANNFHNNFNF。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号