首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
工业技术   8篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
排序方式: 共有8条查询结果,搜索用时 156 毫秒
1
1.
自愈合导电水凝胶因其良好的自愈合性能与导电性能,在柔性可穿戴设备中具有巨大的应用前景。以4-甲酰基苯硼酸(Bn)交联聚乙烯醇(PVA)和聚乙烯亚胺(PEI)构建基于硼酸酯键和亚胺键的双重动态交联水凝胶网络,引入聚吡咯修饰的纤维素纳米纤维(PPy@CNF)构建了具有良好自愈合和导电性的PBP-PPy@CNF纳米复合水凝胶。结果表明,当PPy@CNF的质量分数为0.8%时,水凝胶的力学性能最佳,其最大应力可达6.65kPa,断裂拉伸应变可达2080%,电导率为2174μS/m。基于该水凝胶的电阻式传感器具有良好的稳定性和重复性,在应变检测范围0~800%内,灵敏因子GF可分为三个线性响应区域,分别是0~200%(GF1=2.82)、200%~600%(GF2=7.15)和600%~800%(GF3=12.85),该传感器能有效检测人体不同部位的运动,可应用于可穿戴传感设备。  相似文献   
2.
以明胶(Gel)、壳聚糖(CS)、纳米纤维素(NCC)为原料,采用溶液共混法制备了不同NCC和CS质量比的纳米纤维素/壳聚糖/明胶复合膜。采用紫外-可见分光光度计、扫描电镜(SEM)、红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热分析仪(TGA)和质构仪对所制备复合膜的透光性能、显微结构、化学结构、晶体结构、热学性能和力学性能进行了分析。结果表明:纳米纤维素、壳聚糖、明胶之间形成相互作用较强的网络结构。复合膜表面光滑,分散均匀,具有良好的相容性。随着纳米纤维素含量的增加,复合膜透光率呈下降的趋势。与壳聚糖膜相比,复合膜的热稳定性显著提高。当纳米纤维素与壳聚糖质量比为7:1时,复合膜拉伸强度最高可达到33 MPa,断裂伸长率可达到14.9%,吸水率最大值可达到341%。  相似文献   
3.
以食用菌产业的副产品菌糠为原料,采用磷酸锆催化剂辅助稀硫酸水解制备纳米纤维素晶体(cellulose nanocrystals,CNCs).与传统酸水解方法相比,该方法简化了工艺流程,制备过程环境友好。考察了超声时间、超声温度以及稀硫酸浓度等因素对CNCs得率的影响。结果表明当超声时间为5h、超声温度为75℃及稀硫酸浓度为12.3%时,CNCs得率为42.80%.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)以及X射线衍射仪(XRD)对样品的微观形貌、谱学性能和晶体结构进行了研究分析,结果表明所制得的CNCs呈棒状,直径介于10~30nm之间;CNCs属于纤维素I型,与原料菌糠相比,结晶度由63.79%增大到81.04%;且CNCs仍具有天然纤维素的基本化学结构。论文研究为菌糠的资源化高效利用开辟了新途径。  相似文献   
4.
以羧甲基纤维素(CMC)为原料,经高碘酸钠选择性氧化制备双醛基羧甲基纤维素(DCMC),与明胶通过“席夫碱键”化学交联并掺杂海泡石构筑纤维素基有机-无机杂化复合膜。超声波辅助处理能够有效促进微纤维状海泡石在双醛羧甲基纤维素/明胶溶解体系中的均匀分散,同时产生氢键缔合作用,所得混合液经真空干燥成膜。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱分析仪(FTIR)、热分析仪(TGA)、质构仪对DCMC/明胶/海泡石复合薄膜形貌特征、官能团、热稳定性和力学性能进行表征与分析。结果表明,加入海泡石后复合薄膜力学性能显著提高,当海泡石添加量为0.5g时,拉伸应力和断裂伸长率同时达到最佳效果。复合膜具有良好的热稳定性,显著失重温度在300~350℃范围内。吸附实验表明该复合薄膜材料具备良好的染料吸附性能,对于选定的3种染料(亚甲基蓝、孔雀石绿、藏红T),复合膜吸附量均随海泡石含量的增加而增大,当海泡石添加量大于0.5g时吸附量均超过200mg/g,脱附实验表明该杂化膜可经酸处理解吸再生,有较好的重复利用率。该生物质基有机-无机杂化复合薄膜原料来源丰富,生物可降解,在生物医用和污染防治方面具有潜在应用价值。  相似文献   
5.
采用机械力化学法,以磷钨酸-柠檬酸为复合水解剂处理竹浆纤维,再进一步加入半胱氨酸,使降解的纤维素发生接枝反应,从而在水相中一锅法制备高荧光、高量子产率荧光纳米纤维素(fluorescent cellulose nanocrystals, F-CNC)。研究考察了半胱氨酸溶液浓度、反应时间、反应温度等因素对F-CNC的得率和荧光强度的影响。采用紫外分光光度计(UV-vis)、荧光分光光度计、透射电子显微镜(TEM)、傅里叶红外光谱仪(FTIR)、核磁共振光谱仪(NMR)、X-ray光电子能谱(XPS)、X射线衍射仪(XRD)以及热分析仪(TGA)等对F-CNC的光学性质、形貌结构、化学结构、晶体结构以及热稳定性等进行了表征分析。结果表明,半胱氨酸溶液浓度为1mol/L,反应时间为8h,反应温度为140℃,F-CNC的得率为56.8%,荧光量子产率达到34.24%,荧光寿命达到3.44ns,且F-CNC的直径在20~40nm,长度为150~300nm。基于机械力化学法制备F-CNC工艺简便、绿色环保且所制备的F-CNC在水中具有良好的分散性,在防伪和生物传感器中具有潜在的应用前景。  相似文献   
6.
纳米纤维素及其聚合物纳米复合材料的研究进展   总被引:1,自引:0,他引:1  
纳米纤维素(nanocellulose,NC)是一种具有优异力学性能、质轻、高比表面积、可再生、可生物降解等特性的新型纳米材料,纳米纤维素与聚合物结合得到的复合材料被视为新一代生物质基纳米复合材料。文章首先概述了微纤化纤维素(MFC)、纳米纤维素晶体(NCC)和细菌纳米纤维素(BC)3种主要纳米纤维素的特性及其主要的制备方法,并对其制备过程中存在的问题进行分析。其次,文章简述了纳米纤维素在亲水性聚合物(淀粉、聚乙烯醇、水性聚氨酯等)和非亲水性聚合物(聚乳酸、聚己内酯、聚羟基烷酸酯和环氧树脂等)纳米复合材料方面的研究进展。最后,指出纳米纤维素在绿色工业化生产过程中还需解决生产成本、分离技术、能耗和环境污染等问题。此外,提高纳米纤维素与聚合物之间的界面相容性,开发以纳米纤维素为主体成分的新型纳米复合材料是今后发展的一个重要方向。  相似文献   
7.
以竹浆纤维为原料,基于机械力化学法,在高碘酸钠氧化下一步法制备双醛基微纤化纤微素(dialdehyde microfibrillated cellulose,D-MFC),再与明胶交联构筑基于席夫碱键的D-MFC/明胶复合膜。采用透射电子显微镜(TEM)、傅里叶变换红外光谱分析仪(FTIR)、扫描电子显微镜(SEM)、热分析仪(TGA)和质构仪等对D-MFC和D-MFC/明胶复合膜的官能团、形貌结构、热稳定性和力学性能等进行表征与分析。结果表明,机械力化学法制备的D-MFC直径在10~50nm,长度在微米级,醛基含量为0.237mmol/g。D-MFC在复合膜中具有良好的分散性,D-MFC上的醛基与明胶中的氨基发生反应,形成席夫碱键,从而提高复合膜的热稳定性、拒水性和力学性能。当D-MFC添加量为2.0g时,其拉伸强度可达189.1MPa,最大热失重速率温度为338℃,吸湿率降低至11.14%。采用机械力化学法制备D-MFC具有工艺简便、绿色环保的优点,该生物质复合膜在生物医用材料领域具有潜在的应用价值。  相似文献   
8.
一步法制备乙酰化纳米纤维素及其性能表征   总被引:1,自引:0,他引:1  
采用机械力化学方法,在4-二甲氨基吡啶(DMAP)催化下一步法制备乙酰化纳米纤维素(A-NCC)。通过单因素研究方法,对影响A-NCC得率的DMAP用量、球磨时间、反应温度、超声时间、反应时间等因素进行探讨及分析。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、热分析仪(TGA)、傅里叶变换红外光谱仪(FTIR)和X射线光子能谱分析(XPS)等对所制备A-NCC的形貌、热稳定性和谱学性能进行分析表征,采用滴定法测量表面羟基的取代度。结果表明:机械力化学法制备的A-NCC呈细长状,直径约为10~30nm,长度约为200~750nm,结晶度为76%,取代度(DS)在0.125~0.214之间;TGA分析表明,A-NCC热分解温度为311℃,低于竹浆。采用机械力化学法制备乙酰化纳米纤维素具有工艺简便、绿色环保的优点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号