首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
工业技术   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
以褐煤的高效利用为出发点,以提高宝清褐煤腐植酸提取率为目标,探索了三种不同溶剂(KOH,NaOH,Na4P2O7)提取褐煤腐植酸的最优工艺条件。实验采用响应曲面法考察了反应温度、反应时间、溶剂浓度及其交互作用对腐植酸提取率的影响。结果表明:反应温度对目标值影响最大,且不同影响因素之间的交互作用对目标值有一定的影响,KOH提取时反应温度与反应时间的交互作用影响最大,NaOH和Na4P2O7提取时反应温度与溶剂浓度的交互作用影响最大。得到了不同溶剂下提取宝清褐煤腐植酸的最优工艺参数为:KOH为溶剂时,反应温度86℃,KOH浓度0.04 mol/L,反应时间2.0 h,此时腐植酸提取率为82.99%;NaOH为溶剂时,反应温度94℃,NaOH浓度0.047 mol/L,反应时间1.7 h,此时腐植酸提取率为87.96%;Na4P2O7为溶剂时,反应温度72℃,Na4P2O7浓度0.027 mol/L,反应时间2.0 h,此时腐植酸提取率为86.13%。通过分析三种溶剂提取的腐植酸特性可知,不同溶剂提取的腐植酸的提取率、总酸性基含量及分布不同,使用KOH溶液提取时腐植酸提取率最低,腐植酸相对分子质量最小;使用NaOH溶液提取时腐植酸提取率最高,腐植酸芳香缩合性较高;使用Na4P2O7溶液提取时腐植酸酸性官能团含量最高。  相似文献   
2.
海洋环境中的石油污染物主要来自于原油开采和井喷、运输船舶的漏油以及输油管道的泄漏。随着全球能源消费的快速增长,石油的开采与运输也变得日益频繁。然而,在此过程中衍生出的石油污染问题也更加严峻。据估计,世界各地每年平均溢油量多达40万t。大规模的海上溢油处理方法主要包括物理处理法、化学处理法和生物处理法三大方法。其中原位燃烧、分散剂降解等化学方法需要高昂的成本,并且会对环境造成二次破坏;微生物分解等生物方法对自然条件要求十分苛刻;使用机械装置(如撇油器或喷杆)的物理方法需要输入能量或在高压下进行操作。这些方法均不能充分满足对溢油处理的要求。最近学者提出了一种利用磁改性超疏水/亲油的可浸湿吸油材料进行油水分离的方法。这些材料主要由粘土(二氧化硅)、沸石、活性炭、碳纳米管、聚合物、羊毛和秸秆等物质作为基材,通过四氧化三铁纳米颗粒的嵌入或涂覆以赋予材料磁响应特性。这些具有高孔隙率、高比表面积和丰富孔洞结构的吸附材料不但具有可设计调整性,而且经过磁性颗粒改性后,能够制备出在除油能力、油品回收和操作成本等方面均优于传统方法的磁性吸油材料。尤以聚合物为基材的磁响应吸油材料的研究最为广泛,被磁性纳米颗粒涂覆的聚合物海绵的吸油量最高可达50 g/g,且都具有近95%的吸油效率。其他材质的吸油材料也有所报道。这些磁性吸油材料具有三大特点:(1)吸油效率高,吸油量稳定;(2)固油性能好,吸附油不易脱附;(3)易回收,能够循环利用。本文通过阐释吸附材料的磁改性和吸油机理,分析典型磁改性复合材料的吸油性能测试实验,指出各类吸油材料在溢油处理过程中的优势和局限。特别地提出了磁改性粉煤灰沸石吸油材料,概括了固体废物资源领域的最新研究热点,以期为国内相关研究提供参考。  相似文献   
3.
采用盐酸溶解样品,在保护气二氧化碳的保护下,控制溶液温度在(75±2) ℃、pH值在1.5~2.0范围内,以磺基水杨酸为指示剂,用EDTA标准溶液滴定Fe3+;然后加入过硫酸铵氧化Fe2+,继续用EDTA标准溶液滴定氧化生成的Fe3+,再减去金属铁(MFe)即得到Fe2+含量。试验讨论了溶液温度、酸度及环境保护措施的选择等条件对测定结果的影响。实验方法用于测定3个高炉渣样品中Fe3+和Fe2+,结果的相对标准偏差(RSD,n=5)为0.76%~2.3%。按照实验方法测定3个高炉渣样品中Fe3+和Fe2+,结果与邻二氮菲分光光度法测定结果相吻合。  相似文献   
4.
以生物质发电厂飞灰为原料,经过酸液除杂、矿物质脱除处理后,从飞灰中分离出生物炭。利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱(EDS)和N2的吸附/脱附等对生物质飞灰和生物炭进行表征。研究结果表明:生物炭约占飞灰总质量的13.7%。制得的生物炭芳香度约为28.4%,脂肪碳含量较高,且含氧官能团丰富。生物炭的比表面积为128.98 m2/g,总孔体积为0.08 m2/g,平均孔径为3.4 nm,表面疏松粗糙、孔隙明显且伴随羟基分布,表面活性较高,具备实际生产应用的价值。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号