首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
自然科学   20篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有20条查询结果,搜索用时 20 毫秒
1.
2.
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values. During the interaction of laser irradiation with the investigated materials, a part of the energy was absorbed on the target surface, influencing surface modifications. Laser beam interaction with the target surface resulted in various morphological alterations, resulting in crater formation and the presence of microcracks and hydrodynamic structures. Moreover, different chemical changes were induced on the target materials’ surfaces, resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption. Given the high energy absorption at the site of interaction, the dimensions of the surface damaged area increased. Consequently, surface roughness increased. The appearance of surface oxides also led to the increased material hardness in the surface-modified area. Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.  相似文献   
3.
Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the d-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10?10 m2 s?1 (at 22–24 °C). Considering that the diffusion coefficient of d-glucose in water is D = 6.7 × 10?10 m2 s?1 (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood–brain barrier to neurons and neighboring astrocytes.  相似文献   
4.
J Yan  M O Magnasco  J F Marko 《Nature》1999,401(6756):932-935
Cells must remove all entanglements between their replicated chromosomal DNAs to segregate them during cell division. Entanglement removal is done by ATP-driven enzymes that pass DNA strands through one another, called type II topoisomerases. In vitro, some type II topoisomerases can reduce entanglements much more than expected, given the assumption that they pass DNA segments through one another in a random way. These type II topoisomerases (of less than 10 nm in diameter) thus use ATP hydrolysis to sense and remove entanglements spread along flexible DNA strands of up to 3,000 nm long. Here we propose a mechanism for this, based on the higher rate of collisions along entangled DNA strands, relative to collision rates on disentangled DNA strands. We show theoretically that if a type II topoisomerase requires an initial 'activating' collision before a second strand-passing collision, the probability of entanglement may be reduced to experimentally observed levels. This proposed two-collision reaction is similar to 'kinetic proofreading' models of molecular recognition.  相似文献   
5.
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.  相似文献   
6.
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material.  相似文献   
7.
Zusammenfassung Unter Verwendung von14C-markiertem Glycin wurden durch Bestimmung der mittleren spezifischen Aktivitäten von Glycin im Gewebe und durch Messung der Glycin-Inkorporation in die Adenin-Nucleotide die de novo-Syntheseraten dieser Verbindungen in Niere und Gehirn in vitro und in vivo unter normoxischen Bedingungen sowie nach vorausgegangener Anoxie bzw. Ischämie bestimmt. Zwischen der Fähigkeit eines Organs zur postanoxischen Nukleotidsynthese-Steigerung und seiner funktionellen Erholungsfähigkeit nach Sauerstoffmangel scheinen enge Beziehungen zu bestehen.

Fellow of the A.-v.-Humboldt-Stiftung.

This work was supported by a grant from the Deutsche Forschungsgemeinschaft No. Ge 129/7.  相似文献   
8.
Zusammenfassung Die Radioaktivitätsverteilung von3H und14C nach Gabe von3H- und14C-Glycin weist sowohl in vivo als auch in vitro erhebliche Unterschiede auf. Unsere Resultate zeigen, dass die Aufnahme von Glycin und seine metabolischen Umsetzungen nicht mit 2-3H-Glycin bestimmt werden können.

Supported by a grant from the Deutsche Forschungsgemeinschaft No. Ge 129/7.  相似文献   
9.
10.
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13 Nb–13 Zr alloy in air and argon atmospheres were studied under different laser output energy values. During the interaction of laser irradiation with the investigated materials, a part of the energy was absorbed on the target surface, influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations, resulting in crater formation and the presence of microcracks and hydrodynamic structures. Moreover, different chemical changes were induced on the target materials' surfaces, resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption. Given the high energy absorption at the site of interaction, the dimensions of the surface damaged area increased. Consequently, surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area. Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13 Nb–13 Zr alloy surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号