首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
自然科学   5篇
  2014年   2篇
  2009年   3篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
激波作用下气柱不稳定性发展诱发湍流大涡数值模拟   总被引:1,自引:0,他引:1  
利用Smagorinsky亚格子湍流模型,采用大涡数值模拟方法求解可压缩流体Navier-Stokes方程,通过算子分裂分步计算,给出了适用于可压缩多介质流体界面不稳定性发展诱发湍流的计算程序MVFT(multi-viscosity-fluid and turbulent).引入耗散界面过渡层ITL(interface transition layer)描述SF6气柱初始状态,用MVFT程序对LANL激波加载SF6气柱的激波管实验进行了数值模拟,分析了气柱的形状、流场速度以及涡的特征.计算结果表明,MVFT给出的气柱宽度、高度比RAGE的更接近于实验,气柱上游边界、下游边界和涡边界的速度与实验基本吻合,略小于RAGE的计算结果.MVFT程序的有效性得到初步检验和验证.  相似文献   
2.
发展三维可压缩多介质黏性流动和湍流流动的大涡数值模拟方法MVFT3D,对Poggi等人进行的重流体冲击加载轻流体激波管界面不稳定性实验进行数值模拟,通过Vreman SGS应力模型模拟小尺度运动对大尺度运动的影响,运用统计方法分析湍动能特征。计算结果显示,激波多次加载下扰动界面不稳定性及其诱发的湍流混合是一个非常复杂的发展演化过程,在反射激波第一次加载前湍流混合区宽度增长缓慢,湍动能按时间和空间的1.3次幂指数规律衰减,再加载后湍流混合区宽度非线性增长加快,湍动能强度迅速增强后再逐渐递减,而后期的流场则出现明显的气泡竞争现象。计算给出两次再加载的湍流混合区宽度与实验测试结果吻合,第一次再加载前湍动能随时间和空间1.3次幂指数衰减规律与Mohamed和Larue的研究结论一致。数值模拟再现了实验观察到的激波多次加载过程并描述了湍流混合区发展演化的基本物理特征,检验了数值方法和计算程序。  相似文献   
3.
王涛  柏劲松  李平  刘坤 《中国科学(G辑)》2009,39(12):1770-1778
在可压缩多介质黏性流体动力学计算方法MVPPM(multi-viscous-fluid piecewise parabolic method)基础上,发展了适用于可压缩多介质黏性流体和湍流的并行大涡模拟LES(large-eddy simulation)算法和代码MVFT(multi-viscous-fluid and turbulence),并用于求解多介质的可压缩N—S(Navier-Stokes)方程组.大涡模拟中采用亚格子尺度SGS(subgrid-scale)应力模型来模拟不可解尺度运动对大尺度运动的影响.利用MVFT代码对平面冲击波加速作用下矩形SF6块体运动的Richtmyer-Meshkov不稳定性实验进行了细致的数值模拟.数值模拟得到的SF6块体演化图像和实验图像符合很好,同时数值模拟再现了SF6块体复杂的发展过程——翻滚的状态发展.对表征SF6块体尺度的几何量也进行了详细的比较,数值模拟结果和实验结果一致性也很好,而且定量地给出了SF6块体的发展规律.采用三种SGS模型模拟得到的SF6块体右界面最大位置在后期有明显差异,这是因为在冲击波作用下右界面发展比较复杂,而且不同的SGS模型,耗散也不同.另外。对SGS湍耗散、分子黏性耗散和SGS湍动能进行了研究和分析,它们都和大尺度的涡结构有相似的分布.SGS湍耗散比分子黏性耗散大得多,而Vreman模型的SGS湍耗散比Smagorinsky模型的小.总体上,采用VremanSGS模型的数值模拟结果比Smagorinsky SGS模型和动力黏性要好.最后对SF6块体界面上涡和环量沉积进行了研究.  相似文献   
4.
随着经济和社会各项事业的发展以及科学技术的不断进步,科普事业也进入了飞速发展的阶段,科技馆事业也随之处于历史上最好的发展阶段,得到了社会各界的普遍重视.在这样的环境氛围下,如何长久保持科技馆事业现今这种良好的发展态势就成为我们关注的焦点了.该文从科技馆的队伍、制度、内容等方面分析了促进科技馆可持续发展的管理运营方式.  相似文献   
5.
航天器结构防护的实验研究需要将克量级的金属飞片加速到10 km/s左右的超高速状态,目前中国工程物理研究院流体物理研究所在二级轻气炮装置上对这一关键技术取得了突破性进展,成功将克量级的LY12铝飞片驱动加速到11.0 km/s,将克量级的高密度Ta和Pt飞片分别驱动加速到约10.0 km/s和9.0 km/s.本文简要回顾了我们近年来的实验研究结果,并利用研制的高精度MFPPM计算程序对气炮加载驱动超高速飞片过程进行数值模拟,给出的飞片自由面速度与实验测量结果基本一致.考虑到超高速碰撞效应涉及物质熔化、汽化和等离子状态等宽区物态方程问题,进一步发展了具有自主知识产权的LSFC欧拉型计算程序,在气炮加载驱动超高速飞片问题中对其进行了验证,其计算结果与MFPPM的计算结果基本吻合,拟进一步发展后将其应用于超高速空间碎片及其防护的数值模拟研究.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号