首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环境安全   7篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
Microplastics have been found in large quantities in agricultural soil and now become a major global issue. Different types of microplastic have adverse effects on agricultural soil. The most widely used method for the extraction of microplastics in agricultural soil is the density floatation method by using saturated NaCl solution. This method includes the pre-digestion of soil samples with H2O2 to remove all the organic matter present in the soil. Different types of microplastic particles were extracted and identified by using ATR-FTIR viz polypropylene, polybutylene tetrapthalate, polyethylene, polystyrene, and polyethylene tetrapthalate. The crystalline nature of extracted microplastic was checked by employing XRD analytical technique. Floatation with higher density saturated sodium chloride (NaCl) solution recovered approximately 80% MPs from soil. Floatation methods were found to be effective for extracting microplastics from soils.  相似文献   
2.
Environmental Chemistry Letters - Polyethylene terephthalate is a common plastic in many products such as viscose rayon for clothing, and packaging material in the food and beverage industries....  相似文献   
3.
The increasing use of toxic pesticides is a major environmental concern. Carbendazim is a systemic fungicide having wide applications for controlling fungal diseases in agriculture, forestry and veterinary medicines. Carbendazim is a major pollutant detectable in food, soil and water. Carbendazim extensive and repeated use induces acute and delayed toxic effects on humans, invertebrates, aquatic life forms and soil microorganisms. Here, we review the pollution, non-target toxicity and microbial degradation of carbendazim for crop and veterinary purposes. We found that carbendazim causes embryotoxicity, apoptosis, teratogenicity, infertility, hepatocellular dysfunction, endocrine-disrupting effects, disruption of haematological functions, mitotic spindle abnormalities, mutagenic and aneugenic effect. We also found that carbendazim disrupted the microbial community structure in various ecosystems. The detection of carbendazim in soil and reservoir sites is performed by spectroscopic, chromatographic, voltammetric, nanoparticles, carbon electrodes and mass spectrometry. A review of the degradation of carbendazim shows that carbendazim undergoes partial to complete biodegradation in the soil and water by Azospirillum, Aeromonas, Alternaria, Bacillus, Brevibacillus, Nocardioides, Pseudomonas, Ralstonia, Rhodococcus, Sphingomonas, Streptomyces and Trichoderma.  相似文献   
4.
The levels of polychlorinated dibenzo-dioxins (PCDDs), polychlorinated dibenzo-furans (PCDFs), coplanar polychlorinated biphenyls (coPCBs), and polybrominated diphenyl ethers (PBDEs) were measured in fish collected from San Francisco Bay in 2000 and from the California coast in 2001. The samples were composites of only the edible portions of the fish (skin on, skin off, or whole body minus head and guts) of comparable size and from distinct geographical areas. Sixty-five composite samples were analyzed for PCDD/PCDF/coPCBs, and 43 composite samples were analyzed for PBDEs. For all fish of all species from all sampling areas, the mean concentration of the sum of BDEs 47, 99, 100, 153, and 154 was 302 ng/g lipid weight, with BDE 47>100>99 approximately 154>153. For all fish of all species from all sampling areas, the mean PCDD/PCDF International Toxic Equivalent (I-TEQ) was 33.1 pg/g lipid. For the three coPCBs (77, 126, 169), the mean I-TEQ for all fish of all species from all sampling areas was 109 pg/g lipid. The highest concentrations of both PCDD/PCDF/coPCBs and PBDEs were found in the highly populated areas of San Francisco Bay, the Los Angeles area, and San Diego Bay.  相似文献   
5.
Earthworms,pesticides and sustainable agriculture: a review   总被引:1,自引:0,他引:1  
The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.  相似文献   
6.
Environmental Science and Pollution Research - Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system....  相似文献   
7.
Toxicity,degradation and analysis of the herbicide atrazine   总被引:3,自引:0,他引:3  
Excessive use of pesticides and herbicides is a major environmental and health concern worldwide. Atrazine, a synthetic triazine herbicide commonly used to control grassy and broadleaf weeds in crops, is a major pollutant of soil and water ecosystems. Atrazine modifies the growth, enzymatic processes and photosynthesis in plants. Atrazine exerts mutagenicity, genotoxicity, defective cell division, erroneous lipid synthesis and hormonal imbalance in aquatic fauna and nontarget animals. It has threatened the sustainability of agricultural soils due to detrimental effects on resident soil microbial communities. The detection of atrazine in soil and reservoir sites is usually made by IR spectroscopy, ELISA, HPLC, UPLC, LC–MS and GC–MS techniques. HPLC/LC–MS and GC–MS techniques are considered the most effective tools, having detection limits up to ppb levels in different matrices. Biodegradation of atrazine by microbial species is increasingly being recognized as an eco-friendly, economically feasible and sustainable bioremediation strategy. This review presents the toxicity, analytical techniques, abiotic degradation and microbial metabolism of atrazine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号