首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   13篇
环境安全   20篇
  2022年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
厌氧氨氧化启动过程及微生物群落结构特征   总被引:10,自引:8,他引:2  
汪瑶琪  张敏  姜滢  徐乐中  陈重军  沈耀良 《环境科学》2017,38(12):5184-5191
采用UASB反应器以体积比1∶2接种实验室培养的具有厌氧氨氧化(ANAMMOX)功能的厌氧污泥和城市污水厂的好氧污泥,耗时17 d成功启动ANAMMOX反应,启动阶段分为菌体水解期、活性提高期和稳定运行期.稳定运行后,逐步提高反应器容积负荷富集厌氧氨氧化菌,当容积负荷由0.10 kg·(m~3·d)~(-1)增至0.44 kg·(m~3·d)~(-1)时,总氮(TN)去除负荷也随之由0.09 kg·(m~3·d)~(-1)提高到0.42 kg·(m~3·d)~(-1),反应器污泥逐渐由浅红色加深,粒径大于0.2 mm的污泥所占比例由10.90%增至38.37%.采用高通量测序对接种污泥和负荷提高期的污泥进行检测,其中绿曲挠菌门(Chloroflexi)、变形菌门(Proteobacteria)、WWE3门、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)等占据主导.随着厌氧氨氧化菌富集程度的增大,脱氮功能菌中的变形菌门所占比例逐渐减少,从21.60%降至14.20%,而浮霉菌门随之增多,相对丰度由0.73%升至15.50%.当反应器的容积负荷增到0.44 kg·(m~3·d)~(-1)时,浮霉菌门中,Candidatus Brocadia属、Candidatus Jettenia属和Candidatus Kuenenia属是主要菌属,Candidatus Brocadia属占13.40%,是主要的厌氧氨氧化菌属.  相似文献   
2.
主流条件下两级式PN-ANAMMOX工艺的高效能脱氮过程   总被引:4,自引:2,他引:2  
中低温条件下采用两级式PN-ANAMMOX工艺对低浓度NH_4~+-N(50 mg·L~(-1))污水进行高效脱氮过程研究.结果表明,20~14℃范围内PN-ANAMMOX工艺的脱氮负荷和TN去除率可分别维持在0.6 kg·(m~3·d)~(-1)和80%以上;两级式PN-ANAMMOX工艺在限NO_2~--N和限NH_4~+-N两种模式下均可保持稳定运行,其中限NH_4~+-N运行模式为污水极限脱氮需求奠定了良好基础.当温度降至12℃时,PN-ANAMMOX工艺的脱氮负荷下降至0.5 kg·(m~3·d)~(-1)左右,低温使得ANAMMOX反应成为工艺脱氮的限速步骤而对PN无明显影响.ANAMMOX污泥比PN颗粒污泥具有更高的温度敏感性,二者活性的温度系数分别为1.056和1.172.综上可知,对于低温条件下运行的两级式PN-ANAMMOX工艺,ANAMMOX菌体数量及活性是决定工艺脱氮负荷的步骤,而PN出水中基质组成(即NO_2~--N/NH_4~+-N之比和NO_3~--N浓度)是控制工艺脱氮效果的环节.基于上述结果,提出两级式PN-ANAMMOX工艺主流条件下实现高效能脱氮的分级分离式调控策略.  相似文献   
3.
采用SBR反应器建立了一套通过特定pH终值调控曝气停止点,以实现稳定部分亚硝化的策略,整个运行过程分为3个阶段,阶段Ⅰ启动亚硝化,阶段Ⅱ在稳定亚硝化的同时探索pH终值的设定规律,阶段Ⅲ采用pH终值设定规律实现稳定部分亚硝化,通过跨越夏、冬季(7~35℃)共148d的运行,考察SBR系统内有机物、氮素的转化规律,并分析不同温度(23、18、13℃)对部分亚硝化反应过程的影响.结果表明,在低DO(0.2~0.4mg/L)和MLSS为4000mg/L的条件下,控制pH终值为(7.73±0.02),使出水FA在0.5~1.2mg/L,可稳定部分亚硝化期间的出水NO2--N/NH4+-N值在1~1.4之间,出水亚硝积累率(NAR)维持在85%以上,有机物去除率在60%以上.比氨氧化速率、比亚硝态氮氧化速率、比COD去除速率均随温度下降而降低,但降低趋势较缓,且反应均能稳定完成.  相似文献   
4.
为明确厌氧折流板反应器(ABR)稳定运行厌氧氨氧化反应后各隔室微生物群落结构特征,本文采用Miseq高通量测序分析技术,对ABR厌氧氨氧化反应器5个隔室的微生物分布规律进行了研究,结果表明,ABR反应器中脱氮微生物多样性较为丰富,变形菌门(Proteobacteria)占11.66%~20.28%,浮霉菌门(Planctomycetes)占2.18%~7.94%,硝化螺旋菌门(Nitrospirae)占0.19%~6.30%.其中,在ABR反应器中变形菌门占据主导地位,主要包含Rhodoplanes、Dok59、Rubrivivax和Bdellovibrio等菌属,浮酶菌门次之,主要包含Candidatus brocadia和Candidatus kuenenia菌属.从第1~5隔室,污泥表观红色逐渐减退,趋向于灰黑色,Chao、ACE、Shannon、Simpson指数均表明微生物群落丰富度逐渐增加,且变形菌门微生物逐渐增加,而浮霉菌门微生物逐渐降低,这与基质的降解和功能微生物的富集规律相一致.  相似文献   
5.
pH是亚硝化系统实现并稳定的重要调控手段,为研究不同C/N(0、1、2、3、4)及污泥浓度(污泥量∶配水量为1∶6、1∶3、1∶1)下亚硝化系统的pH变化规律及在不同pH变化下对污染物去除转化过程的影响,以乙酸钠为碳源,采用锥形瓶接种成熟的亚硝化污泥进行了批次试验.结果表明,相同污泥浓度下,C/N越大,pH增量越大,反硝化效率越高;相同C/N下,污泥浓度越大,pH增量越小,反硝化效率越高.反应系统对碳氮的去除转化与pH变化存在较大的相关性,且反硝化与亚硝化反应具有先后顺序.整个系统运行期间,pH上升过程的比COD去除速率是pH下降时的7~16倍,pH下降过程的比氨氧化速率(SAOR)是上升过程的1~20倍,当pH 6. 1,系统失去氨氧化能力.本试验过程中,C/N为4时该系统碳氮去除效率较其他工况最佳,3个污泥浓度下分别耗时480、350、300 min完成氨的转化及80%的COD去除.不同工况下,亚硝化反应在系统内的占比维持在50%以上,且NO-3-N浓度一直低于5 mg·L-1,表明该系统以亚硝化作用为主导.  相似文献   
6.
为提高人工湿地除磷效能,从沸石、陶粒、萤石、膨胀蛭石、石灰石、麦饭石、火山岩、牡蛎壳、钢渣和废砖块这10种具有较高磷素饱和吸附量的填料中,筛选出钢渣、沸石和石灰石3种适宜处理分散性生活污水的人工湿地填料,并分别使用不同浓度梯度的酸(碱)、盐对3种填料进行改性,以增强其除磷能力。研究结果表明,钢渣、沸石和石灰石分别经2 mol/L AlCl3、2 mol/L NaOH及2 mol/L AlCl3、0.5 mol/L AlCl3溶液改性后,磷素吸附量达到最高值(0.272、0.0801和0.351 mg/g),而双常数方程能更好地描述优选填料对生活污水中磷的吸附动力学过程,综合考虑填料的吸附效果、成本及来源,改性石灰石是人工湿地处理分散性生活污水时较为理想的除磷填料;此外,填料经铝改后,氮磷吸附效果普遍优于其他改性条件,且Al-P有利于植物直接吸收利用,含铝废水来源广泛,故利用铝改液处理人工湿地填料具有较高的应用推广价值。  相似文献   
7.
不同接种污泥ABR厌氧氨氧化的启动特征   总被引:10,自引:9,他引:1  
采用两套相同的厌氧折流板反应器(ABR),分别接种厌氧絮状/颗粒污泥的混合污泥(R1)以及厌氧絮状污泥(R2).采用人工配水配制NH+4-N、NO-2-N负荷54.5~68.0 g·(m3·d)-1,在温度30~35℃,HRT为26 h,p H值7.5±0.5条件下,经过120 d、125 d分别成功启动厌氧氨氧化反应.两个反应器在氮素去除规律上基本相似,均经历了菌体水解期、活性停滞期、活性提高期和稳定运行期等4个阶段.在稳定运行期间,R1、R2反应器中NH+4-N、NO-2-N的平均去除率都高达90%以上,且NH+4-N、NO-2-N的平均去除负荷为57.3~67.9 g·(m3·d)-1,R1在NH+4-N的去除负荷上略高于R2.值得一提的是,90%以上的氮素都在ABR反应器的第一格室被去除.同时,随着水流的方向,污泥的颜色逐渐由少量红棕色、黄褐色向黑色转变,这与氮素去除规律一致.由此表明,接种污泥的不同并未造成ABR厌氧氨氧化反应器的启动规律和污染物去除特征有明显差异.  相似文献   
8.
采用序批式活性污泥反应器-厌氧折流板反应器(SBR-ABR)组合工艺,构建"部分亚硝化-厌氧氨氧化反硝化"(PNSAD)反应链实现深度脱氮除碳.设定3种不同的运行工况,工况Ⅰ将SBR出水(NO_2~--N/NH_4~+-N为1~1.32)直接接入单隔室ABR厌氧氨氧化系统,发现虽然实现了厌氧氨氧化反应的稳定运行,但联合工艺总氮(TN)去除率低于80%,出水TN约20mg·L~(-1).为在ABR内增加反硝化功能,向ABR反应器第三隔室添加反硝化污泥,于工况Ⅱ将SBR出水接入,发现耦合反应对TN去除率仍偏低若实现深度脱氮需在厌氧氨氧化后段补充碳源.故在工况Ⅲ调控SBR出水(NO_2~--N/NH_4~+-N=5)与部分原水混合(NO_2~--N/NH_4~+-N=1.4;C/N=2.5),接入单隔室ABR厌氧氨氧化反硝化系统不仅实现了厌氧氨氧化段基质的良好配比,也为反硝化提供了良好的有机碳源,整个工艺出水COD为50左右,TN在6以下,TN去除率达到95%.在SBR-ABR反应器内构建PN-SAD联合反应为废水深度脱氮除碳提供了理论基础.  相似文献   
9.
采用膨胀颗粒污泥床(EGSB)和上升式厌氧污泥床(UASB)反应器在不同运行条件下培养厌氧氨氧化颗粒污泥,对比分析颗粒污泥性质和微生物群落的差异性.研究表明接种厌氧氨氧化絮状污泥经过EGSB和UASB反应器运行384 d后,均能实现颗粒化,颗粒污泥平均粒径分别达到1.17 mm和1.21 mm,各范围(0.2、 0.2~1.5、 1.5~3和3 mm)的粒径占比为6.06%、 60.05%、 25.25%和8.64%, 7.40%、 58.90%、 32.04%和1.66%.扫描电镜结果表明不同运行条件下的污泥菌群均以短杆菌、球型菌为主.高通量测序结果表明,Shannon指数EGSB反应器为7.52高于UASB反应器为7.18;变形菌门(Proteobacteria)是两个反应器各阶段污泥的主要菌门,浮霉菌门(Planctomycetes)从接种时的3.30%增到第384d的12.30%(EGSB)和13.30%(UASB).EGSB反应器中的主要厌氧氨氧化菌属为Candidatus Brocadia占7.53%,其次为Candidatus Kuenenia属占1.61%;而在UASB反应器中Candidatus Brocadia属和Candidatus Kuenenia属分别占比为3.69%和7.54%,Candidatus Kuenenia是其优势厌氧氨氧化菌属.优势菌群丰度与环境因子变化存在联系,Candidatus Brocadia丰度与上升流速(v)、氮容积去除负荷(NRR)呈正相关而与水力停留时间(HRT)呈负相关,Candidatus Kuenenia与氮负荷去除率(NRE)、NRR、HRT呈正相关,而与v呈负相关.  相似文献   
10.
采用厌氧折流板反应器(ABR)为研究对象,以一定COD、NH+4-N和NO-2-N比例增加进水基质浓度,以明确基质负荷提高对ABR厌氧氨氧化和反硝化协同体系脱氮除碳的影响,并通过基质去除模型获得反应器对基质的耐受程度.研究表明,ABR反应器能够实现厌氧氨氧化反硝化耦合脱氮除碳,当进水基质COD、NO-2-N和NH+4-N浓度从220、168和60 mg·L~(-1)提高至420、270和110 mg·L~(-1)时,反应器脱氮效能下降,COD、NO-2-N、NH+4-N和TN去除率分别为97%、94%、30%和78%,厌氧氨氧化对TN去除的贡献率从43.08%骤降至16.49%,反硝化脱氮贡献率从53.81%增至82.07%.动力学模型拟合发现,Stover-Kincannon模型(R2=0.937,TN;R2=0.975,COD)较一级基质去除模型(R2=0.314,TN;R2=0.016,COD)更适合评价反应器对基质的承受力;Stover-Kincannon模型表明,反应器对TN和COD的最大基质利用率分别为1.43 g·L-1·d-1和3.33 g·L-1·d-1,饱和常数(KB)分别为1.2和3.79,研究认为ABR协同脱氮除碳体系理论上还有继续提升基质负荷的潜力.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号