首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
生物科学   108篇
  2021年   1篇
  2020年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有108条查询结果,搜索用时 277 毫秒
1.
F M Marassi  P M Macdonald 《Biochemistry》1991,30(43):10558-10566
The response to membrane surface charge of the glycerol headgroup of dimyristoyl-phosphatidylglycerol (DMPG) was investigated via deuterium and phosphorus-31 nuclear magnetic resonance spectroscopy. The membrane surface charge was manipulated by adding various amounts of neutral dimyristoylphosphatidylcholine (DMPC) and/or positively charged didodecyldimethylammonium bromide (DDAB) to the negatively charged DMPG, selectively deuterated at the alpha and beta segments of its glycerol headgroup. The deuterium and phosphorus-31 nuclear magnetic resonance spectra were all characteristic of random dispersions of liquid-crystalline lipids in a bilayer configuration. Differential scanning calorimetry showed that all mixtures investigated exhibited gel to liquid-crystalline phase transitions below 35 degrees C. Measurements of the deuterium quadrupole splitting and of the phosphorus-31 chemical shift anisotropy lead to the following observations. (1) Dilution of the negative surface charge density by the addition of DMPC had little effect on the quadrupole splitting from either alpha- or beta-deuterated DMPG. (2) Direct cancellation of the negative surface charge density by addition of DDAB led to a progressive decrease in the quadrupole splitting measured from alpha-deuterated DMPG, while the quadrupole splitting measured from beta-deuterated DMPG increased. For alpha-deuterated DMPG addition of 0.3 mole fraction of DDAB resulted in the appearance of two distinct quadrupole splittings. No such effect was observed for beta-deuterated DMPG.  相似文献   
2.
Additive manufacturing consists in melting metallic powders to produce objects from 3D data, layer upon layer. Its industrial applications range from automotive, biomedical (e.g., prosthetic implants for dentistry and orthopedics), aeronautics and others. This study uses life cycle assessment to evaluate the possible improvement in environmental performance of laser‐based powder bed fusion additive manufacturing systems on prosthetic device production. Environmental impacts due to manufacturing, use, and end of life of the designed solution were assessed. In addition, two powder production technologies, gas atomization (GA) and plasma atomization (PA), were compared in order to establish the most sustainable one. Production via traditional subtractive technologies and the additive manufacturing production were also compared. 3D building was found to have a significant environmental advantage compared to the traditional technology. The powder production process considerably influences on a damage point of view the additive manufacturing process; however, its impact can be mitigated if GA powders are employed.  相似文献   
3.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
4.
This paper describes a simple, qualitative approach for the determination of membrane protein secondary structure and topology in lipid bilayer membranes. The approach is based on the observation of wheel-like resonance patterns observed in the NMR 1H-15N/15N polarization inversion with spin exchange at the magic angle (PISEMA) and 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in oriented lipid bilayers. These patterns, named Pisa wheels, have been previously shown to reflect helical wheel projections of residues that are characteristic of alpha-helices associated with membranes. This study extends the analysis of these patterns to beta-strands associated with membranes and demonstrates that, as for the case of alpha-helices, Pisa wheels are extremely sensitive to the tilt, rotation, and twist of beta-strands in the membrane. Therefore, the Pisa wheels provide a sensitive, visually accessible, qualitative index of membrane protein secondary structure and topology.  相似文献   
5.
6.

Background

Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries. Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. The first successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

Results

This study demonstrates that atypical scrapie has distinct clinical, pathological and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

Conclusions

Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage.  相似文献   
7.
Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys40, residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein dynamics but also protein-lipid interactions in detail.  相似文献   
8.
Although osteoporosis and its related fractures are common in patients with COPD, patients at high risk of fracture are poorly identified, and consequently, undertreated. Since there are no fracture prevention guidelines available that focus on COPD patients, we developed a clinical approach to improve the identification and treatment of COPD patients at high risk of fracture. We organised a round-table discussion with 8 clinical experts in the field of COPD and fracture prevention in the Netherlands in December 2013. The clinical experts presented a review of the literature on COPD, osteoporosis and fracture prevention. Based on the Dutch fracture prevention guideline, they developed a 5-step clinical approach for fracture prevention in COPD. Thereby, they took into account both classical risk factors for fracture (low body mass index, older age, personal and family history of fracture, immobility, smoking, alcohol intake, use of glucocorticoids and increased fall risk) and COPD-specific risk factors for fracture (severe airflow obstruction, pulmonary exacerbations and oxygen therapy). Severe COPD (defined as postbronchodilator FEV1 < 50% predicted) was added as COPD-specific risk factor to the list of classical risk factors for fracture. The 5-step clinical approach starts with case finding using clinical risk factors, followed by risk evaluation (dual energy X-ray absorptiometry and imaging of the spine), differential diagnosis, treatment and follow-up. This systematic clinical approach, which is evidence-based and easy-to-use in daily practice by pulmonologists, should contribute to optimise fracture prevention in COPD patients at high risk of fracture.  相似文献   
9.
IntroductionEngagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments.MethodsCadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA.ResultsSoluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts.ConclusionsCadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0647-9) contains supplementary material, which is available to authorized users.  相似文献   
10.
An Escherichia coli plasmid vector for the high-level expression of hydrophobic membrane proteins is described. The plasmid, pBCL, directs the expression of a target polypeptide fused to the C terminus of a mutant form of the anti-apoptotic Bcl-2 family protein, Bcl-XL, where the hydrophobic C terminus has been deleted, and Met residues have been mutated to Leu to facilitate CNBr cleavage after a single Met inserted at the beginning of the target sequence. Fusion protein expression is in inclusion bodies, simplifying the protein purification steps. Here we report the high-level production of PLM, a membrane protein that is a member of the FXYD family of tissue-specific and physiological-state-specific auxiliary subunits of the Na,K-ATPase, expressed abundantly in heart and skeletal muscle. We demonstrate that milligram quantities of pure, isotopically labeled protein can be obtained easily and in little time with this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号