首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   15篇
  国内免费   1篇
航空航天   22篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 187 毫秒
1.
为研究10 cm口径发散磁场离子推力器内部的放电过程并对后续工程改进提供参考,采用COMSOL多物理场耦合软件建立推力器放电模型,获得关键放电参数,并根据试验结果进行验证。模拟结果表明:放电室内部上游磁极和下游磁极之间形成具有强烈发散特性的磁场,并在正交电场的影响下,使电子发生以磁力线为导向中心的霍尔漂移运动;放电室内部气体压强分布均匀且基本在0.1~0.11 Pa范围内,大部分区域的中性原子密度约为1.5×1019 m-3,流体速度在0.2~0.9 m/s的范围内且呈现明显的黏滞流特性;电子密度峰值出现在阴极出口区域,约为8.57×1018 m-3,阳极壁面附近及栅极上游区域的等离子密度约为6.8×1017 m-3。试验结果显示:采用E×B探针测量得到双核离子占总束流离子比为14.1%,根据COMSOL计算值得到的0.353 mA束流理论值与0.323 mA的束流实测值比对误差为9%,误差主要来自于仿真条件设置及试验测量。研究结果可为离子推力器工程化改进...  相似文献   
2.
孙明明  郑艺  杨俊泰  史楷 《推进技术》2021,42(3):711-720
栅极间距变化是影响离子推力器在轨环境下从冷态条件正常点火启动的重要因素,同时也决定了离子推力器的在轨工作时机和热控实施策略。本文采用有限元仿真与地面热平衡试验验证相结合的方法,建立起30cm离子推力器有限元分析模型并进行了模型校验,之后对离子推力器在轨受太阳光照影响的栅极温度场分布和间距变化,以及推力器在5kW工况下的三个典型温度点所对应的栅极间距变化进行了仿真分析,最后考虑了主动热控干预对推力器最恶劣工作点的栅极间距变化影响。结果显示:纯太阳光照影响下的栅极组件存在周期性温度变化,栅极最大温差可达到100℃,栅间距缩小量在0.06mm~0.16mm范围内波动;在太阳光照基础上实施60W的主动热控后,栅极最大温差降低至60℃,栅间距缩小量波动范围则变为0~0.03mm;栅极最高温度点和最低温度点分别是推力器冷态启动最容易和最困难的两个工作时机点,两点所对应的启动后屏栅和加速栅最小间距分别为0.22mm和0.04mm;在10W、70W和120W的热控加热功率下,从最低温度点启动后的屏栅和加速栅最小间距分别为0.06mm、0.20mm和0.29mm;采取主动热控措施能够有效降低推力器工作过程中的栅极热形变位移峰值,且加热功率为120W即温控点温度为50℃的主动热控可以满足30cm离子推力器在轨冷态启动时的0.25mm安全栅极间距要求。  相似文献   
3.
聚酰亚胺胶粘剂的粘接性能   总被引:1,自引:0,他引:1  
 采用等摩尔的酮酐(BTDA)和醚胺(ODA)在N,N 二甲基甲酰胺(DMF)中合成了线形缩聚型聚酰胺酸(PAA),并用红外光谱对其结构进行了表征,用TGA对其热关环亚胺化后进行了分析,结果表明其热分解温度可达600 ℃,所成薄膜具有良好的韧性。同时采用纳迪克酸酐(NA)为封端剂,通过调整NA/BTDA/ODA的比例,合成了不同分子量的PAA预聚体,并用红外光谱对其结构进行了表征,对其热关环亚胺化后进行差热分析,表明其端基交联固化温度为350 ℃左右,且随着分子量的提高峰温向高温方向移动。TGA表明,热固性聚酰亚胺(PI)交联固化后的热分解温度为483 ℃左右。采用上述线形缩聚型PAA与热固性PI共混,将固化后线形缩聚型PI的韧性与热固性PI高温性能结合起来,直接用做耐高温胶粘剂,可以获得较高的室温和高温剪切强度,并具有良好的高温热老化性能。  相似文献   
4.
为评价30cm离子推力器的寿命,提出了有限寿命考核结合栅极仿真模型的推力器寿命预估方法,利用粒子-蒙特卡洛(PIC-MCC)方法建立了栅孔溅射腐蚀模型,开展了30cm离子推力器寿命预估研究,分析了栅孔刻蚀速率、单孔电场及离子引出特性,给出了30cm推力器寿命预估值。结果表明,栅孔直径仿真与实测值一致性较好,误差在20%以内,基于每个寿命小节栅孔实测值对模型的修正是有效的;根据仿真结果,10000h寿命考核后,减速栅最先失效,30cm离子推力器在最大功率(3kW)工况下预估寿命为37540h,能够满足小天体探测任务对电推进系统的长寿命需求。  相似文献   
5.
LHT-100霍尔推力器热特性模拟分析   总被引:2,自引:2,他引:0       下载免费PDF全文
孙明明  顾左  马永斌  丁汀  龙建飞 《推进技术》2014,35(12):1715-1721
为了对LHT-100霍尔推力器提出热设计优化措施,采用有限元仿真软件进行LHT-100霍尔推力器的稳态、瞬态及空间在轨环境模拟热分析研究,并通过热平衡试验进行了结果比对。分析及试验结果表明,处于工作状态时霍尔推力器的高温部件主要是放电腔、阳极和导磁底座,而受高温影响薄弱部件内线圈、气路组件的温度则分别达到了约401~421℃和141~381℃。热设计优化建议为,在放电腔与内线圈之间增加独立热屏结构后可以有效降低内线圈温度约80~90℃,在阳极气路组件上存在的热应力会是影响霍尔推力器可靠性的重要因素,需要在热设计中得到充分考虑。  相似文献   
6.
为了研究30cm离子推力器三栅极组件设计参数对预估寿命的影响,在完成失效模式分析的基础上,通过PIC-MCC方法对离子推力器三栅极组件的离子溅射速率进行了计算,建立起栅孔二维寿命预估模型,并针对栅极设计参数对预估寿命的影响进行研究。结果显示:导致三栅极组件的主要失效模式为5kW高功率模式下的离子直接轰击所造成的栅极早期结构失效,且减速栅的过快离子溅射腐蚀成为影响三栅极组件寿命的关键,而不同工作模式不会产生新的失效方式,仅影响栅极的离子溅射速率以及寿命;在现有三栅极设计参数条件下,当推力器工作时,栅极引出的离子束流处于明显欠聚焦状态,且加速栅寿命预估值约为9062h,而减速栅约为2642h;通过PIC-MCC方法得到的栅极三个关键设计参数对寿命的影响模拟结果显示,降低加速栅电压对提升减速栅寿命的作用较小;缩小加速栅与减速栅冷态间距后,离子溅射速率会随着冷态间距的缩小逐渐降低,冷态间距由1mm缩小至0.6mm后,减速栅在5kW工况下的工作寿命可提升至10726h,且经试验验证该间距可满足推力器力学环境试验要求;缩小屏栅孔径对改变离子束流引出形状具有显著作用,单孔束流发散角度随着屏栅孔径的缩小出现了明显降低,且束流离子几乎不会再直接轰击至减速栅上游区域,当屏栅孔径由1.9mm缩小至1.6mm后,减速栅工作寿命可提升至9259h;分析结果对后续开展栅极组件的寿命优化设计提供了参考。  相似文献   
7.
30cm离子推力器空心阴极发射体区等离子体特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
孙明明  张天平  龙建飞 《推进技术》2017,38(12):2872-2880
为了获得30cm口径离子推力器20A额定发射电流空心阴极的稳态工作性能参数并验证现有发射体结构设计的合理性,采用数值模拟及有限元分析方法研究了空心阴极发射体区的等离子体特性参数。结果显示:空心阴极发射体区的压强基本在115~150Pa内,并且中间区域的Xe气压强较高;当阴极发射体温度为1570℃时,根据一维热传导方程得到发射体热损为10.26W;发射电流为15A时,电子温度在1.5~1.7e V内,且沿轴线方向靠近阴极顶小孔的电子温度较高,而将15A发射电流作为空心阴极的工作点是较为合适的选择;数值计算得到发射体区平均电子电流密度约为1.3×105A/m2,发射体内表面面积预估为1.5cm~2,内径建议在?2~2.5mm内,采用该尺寸发射体的空心阴极通过电流发射能力试验证明其最大发射电流在19~20A内,现有发射体尺寸设计满足20A发射电流需求;发射体区中间区域离子电流密度峰值约为8.5×10~5A/m~2,应重点关注发射体中间区域的厚度设计以及离子溅射腐蚀速率。  相似文献   
8.
采用接枝的方法在丁腈-40分子链中接入了羧基,从而获得了高门尼粘度的羧基丁腈橡胶,并用其对环氧树脂进行改性,从而制备出耐高温环氧树脂结构胶.通过加入促进剂可将固化温度从佑180℃降至120℃.  相似文献   
9.
目前国内民用运输机执行纵向静稳定性试飞时主要采用稳态法,而此方法存在试验时因飞行高度变化过大过快而难以采集足够试飞数据的缺点。针对FAA 咨询通告AC25-7C 中提出的两种关于纵向静稳定性的试飞方法进行对比分析,从而考察平飞加减速法的可执行性,分析传统的稳态法和新的平飞加减速法的优缺点和实际飞行试验时的可行性,得出初步结论为平飞加减速法有其独特的优点,主要适用于能平飞配平的试验点,而对于飞机发动机设置于最大推力和慢车推力试验点的适用性,还需通过试验进一步考察确定。  相似文献   
10.
离子推力器栅极热变形的摄像测量方法   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决离子推力器栅极在真空、高温、等离子体环境中微小热变形量检测的技术难题,提出了一种基于摄像测量原理的离子推力器栅极热变形测量方法,设计了一套基于远距显微镜进行栅极热变形测量的系统。运用交互式分区标定方法获得多目标清晰边缘,借助陶瓷探针及圆形合作标志完成栅极亚像素级变形量检测、图像放大系数计算以及切向畸变校正、水平面校正。精度验证实验表明本方法静态检测精度9μm,栅极热变形实验测量结果与国外同类实验趋势一致,系统满足离子推力器栅极热变形测量的需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号