首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   2篇
地球科学   13篇
  2022年   1篇
  2015年   2篇
  2013年   1篇
  2011年   2篇
  2009年   7篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
1955—2007年拉萨市雨季夜雨率变化特征   总被引:1,自引:0,他引:1  
余忠水 《气象》2011,37(12):1584-1588
利用1955—2007年拉萨市逐日降水和气温地面观测资料,分析了拉萨市雨季(5—9月)夜雨率变化特征。结果表明:拉萨市整个雨季日夜雨率变化是比较稳定的,近50多年来基本没有发生明显的年代际变化。夜雨率与日降水量有显著关联,当日降水量在25 mm以下时,夜雨率随降水量增加而增大,当日降水量〈1 mm时夜雨率最小为75.2%,当日降水量为25 mm时,夜雨率达到最大值93.4%;夜雨率与日温差存在显著的负相关;拉萨多夜雨与地形有关,高夜雨率既有有利的一面,也会带来一些负面影响。因此,深入探讨夜雨率是制定有效防御气象灾害对策的重要依据。  相似文献   
2.
利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。  相似文献   
3.
西藏气象部门立足本地实际,因地制宜,扬长避短,积极稳妥地推进西藏气象科技服务发展。至今已有十多年的发展历程,气象科技服务经过艰难的探索和实践,从无到有,从单一的常规预报服务到根据用户的特殊需求制作的专业、专项预报服务再扩大到气象工程服务。气象科技服务对气象现代化建设和气象事业快速发展起到积极的推进和支撑作用。  相似文献   
4.
青藏高原夏季夜雨率空间分布及其变化特征   总被引:3,自引:0,他引:3  
选取了1961-2007年青藏高原海拔2000m以上76个气象站夏季(6-9月)逐日地面降水观测资料,分析了青藏高原夏季夜雨率的时空特征,结果表明:1.青藏高原夜雨率具有显著的区域差异性,在西藏中西部夜雨率呈“纬向型”分布,而西藏东部、川西高原至滇北夜雨率则表现为“西北-东南”走向;夜雨率高值中心出现在雅鲁藏布江中段(日喀则地区东北部至拉萨市一带),达到75%以上,同时喜马拉雅山脉南麓可能是夜雨率>70%的另一个高值区域;夜雨率最低值在青海省西北部,仅为33%;2.高原夜雨率具有明显的海拔效应,夜雨率与海拔呈显著的反相关,即海拔越高夜雨率越低,反之亦然;3.高原夜雨率随夏季日期推后呈增大趋势,而年际变化上则表现为明显的下降趋势,20世纪80年代初存在明显的突变现象;4.高原夜雨率与日降水量之间存在一定的关联:当日降水量<1 mm时夜雨率仅为48.8%,此后夜雨率随着日降水量增加而明显增大,特别是降水量在20 mm以下时,夜雨率上升速度最快,上升幅度超过20%;当日降水量为23~40 mm时,夜雨率稳定在70%~76%间,随后又略有波动下降;当日降水量为33 mm时,夜雨率达到极大值,为75.1%.青藏高原夜雨率的空间变化可能受大地形的影响.高原夜雨对农牧业生产有利的同时,也可能会带来诸多自然灾害.因此,深入探讨夜雨率是制定有效防御气象灾害对策的重要依据.  相似文献   
5.
根据拉萨站近40 a(1969—2008年)探空观测资料以及同期的地面降水资料,分析了拉萨近40 a夏季大气可降水量和地面降水的演变特征及其关系.结果表明:该站夏季大气可降水量和降水存在显著的正相关关系,两者存在相同的年际和年代际变化,均具有准3 a年际振荡和准11 a左右的年代际振荡;近40 a来两者均呈现出上升趋势,其中降水的增加趋势明显,其增幅大于可降水量的增幅.进一步通过对拉萨夏季降水转化率分析得知,拉萨夏季平均降水转化率约为26.06%,但存在明显的年际差异,夏季降水转化率最大值约为最小值的3倍;夏季降水转化率正(负)异常年,拉萨地区低层的辐合和高层的辐散均明显增强(减弱),拉萨地区垂直速度将增加(减弱),从而有(不)利于降水形成.  相似文献   
6.
从地貌地质环境、地面气象要素、大气环流背景、T213数值预报产品和卫星资料等方面,着重分析诱发灾害的气象条件,对2007年9月4日西藏波密县古乡天摩沟发生的一次特大泥石流地质灾害事件成因进行初步分析。结果表明:由于前期气温持续偏高,加剧冰川融水,加上9月4日凌晨出现强降水,天摩沟地形高度落差大、松散固体物质丰富,水源、能量转化和物源三种条件同时满足^[1],是造成这次特大泥石流地质灾害的直接原因。  相似文献   
7.
通过对1970~2006年西藏泥石流、滑坡的时空分布特征与降水条件分析,得出西藏地区泥石流、滑坡主要发生在藏东地区、喜马拉雅山南侧及沿雅鲁藏布江一线,每年6~8月是泥石流、滑坡多发时段,降水是诱发泥石流、滑坡的主要气象条件,发生泥石流、滑坡可能性与不同雨型、不同等级降水和与前期降水情况密切相关。该研究分析结论,为西藏泥石流、滑坡预警预报提供了参考依据。  相似文献   
8.
西藏泥石流、滑坡时空分布特征及其与降水条件的分析   总被引:2,自引:0,他引:2  
通过对1970~2006年西藏泥石流、滑坡的时空分布特征与降水条件分析,得出西藏地区泥石流、滑坡主要发生在藏东地区、喜马拉雅山南侧及沿雅鲁藏布江一线,每年6~8月是泥石流、滑坡多发时段,降水是诱发泥石流、滑坡的主要气象条件,发生泥石流、滑坡可能性与不同雨型、不同等级降水和与前期降水情况密切相关。该研究分析结论,为西藏泥石流、滑坡预警预报提供了参考依据。   相似文献   
9.
西藏波密县天摩沟“9·4”特大泥石流灾害成因初步分析   总被引:1,自引:0,他引:1  
从地貌地质环境、地面气象要素、大气环流背景、T213数值预报产品和卫星资料等方面,着重分析诱发灾害的气象条件,对2007年9月4日西藏波密县古乡天摩沟发生的一次特大泥石流地质灾害事件成因进行初步分析。结果表明:由于前期气温持续偏高,加剧冰川融水,加上9月4日凌晨出现强降水,天摩沟地形高度落差大、松散固体物质丰富,水源、能量转化和物源三种条件同时满足^[1],是造成这次特大泥石流地质灾害的直接原因。  相似文献   
10.
1971-2010年雅鲁藏布江中游气候生长期变化特征   总被引:1,自引:0,他引:1  
利用1971-2010年雅鲁藏布江中游河谷地区拉萨、日喀则、泽当和江孜4个站逐日平均气温和降水量资料,分析了该地区气候生长期变化特征。结果表明:(1)雅鲁藏布江中游地区各界限温度气候生长期以5~8 d·(10a)-1的速率增加,其中≥0℃和≥10℃界限温度的气候生长期都增加了30天左右,≥5℃气候生长期增加了20天左右;以稳定通过10℃界限温度来判断,该地区冬半年时间在缩短,夏半年时间在延长。(2)该地区稳定通过各界限温度的初日提前、终日推后,持续天数和活动积温增加趋势显著;≥10℃界限温度的降水量和降水日数增加趋势显著,分别以19 mm·(10a)-1和1.5 d·(10a)-1的速率增加,且在20世纪80年代末发生突变,表明该地区稳定通过10℃界限温度的水热条件显著地向暖湿变化。(3)各界限温度的终日年际变化相对较稳定,其他要素年际变化均处于不稳定状态;年代际变化上,≥10℃界限温度的初日、终日、持续天数以及各界限温度的活动积温保持台阶式变化,其他要素呈波动变化,最小值出现在20世纪80年代。(4)≥10℃界限温度的终日、持续天数和活动积温的变化趋势在20世纪90年代后期出现突变现象,表明≥10℃界限温度的终日显著推后趋势对夏半年的延长贡献最大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号