首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球科学   8篇
  2021年   1篇
  2019年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
光度观测是地基观测空间目标的主要手段之一,利用光度信息能够估计空间目标的相关特征信息。为了更好地了解空间目标的旋转状态,选取具有代表性的猎鹰九号火箭末级作为研究对象,由其光变信息研究旋转状态。首先利用云南天文台1.2 m光学望远镜获取猎鹰九号火箭末级的光度数据,再对目标星等进行斜距归一化,得到目标光变信息并分析目标星等随时间变化的曲线,估计大致的旋转周期,再由相位离散最小化方法计算会合周期。根据太阳、目标和测站之间的位置关系、惯性主轴指向、旋转轴指向、初始相位等因素,采用姿态旋转矩阵计算理论星等,利用最小二乘原则确定惯性主轴方向及初相角度、旋转轴指向。最后给出了猎鹰九号火箭末级的旋转周期、会合周期以及旋转轴指向等参数,为后续开展其他空间目标光度信息研究提供参考。  相似文献   
2.
利用云南天文台1.2m望远镜多色测光系统,选取一批Landoh标准星,利用较差测量的方法对该系统进行了大气消光系数和仪器转换系数的测定,分析了这套新的测光系统的性能.计算结果表明本系统与Johnson标准测光系统非常接近.同时也对该系统的测光精度进行了测定,在标准测光夜下测量亮于13.5等的星时,其V波段测光精度可达到0.041星等.  相似文献   
3.
摘要:卫星激光测距是目前空间大地测量的主要手段之一,在地球动力学和大地测量学等领域有广泛的应用。云南天文台即将开展非合作目标分光路激光测距试验,即激光接收和发射光路系统分别由相邻较近的两台望远镜完成。针对分光路非合作目标激光测距系统,提出了一种非合作目标分光路激光测距中测距值的确定方法,并给出了相应的计算公式,为分光路激光测距数据处理提供参考。  相似文献   
4.
非合作目标的激光测距预报一般是基于双行根数(TLE)外推出来的,往往有较大偏差,对激光测距的成功率有较大影响。结合空间目标的轨道理论和实测的数据分析,预报的偏差主要是预测模型外推的空间目标在运行轨道上的平近点角与实际平近点角存在偏差。根据非合作目标在望远镜跟踪视场中的脱靶量,利用相关算法可以找到一个最佳的时间根数偏差量修正空间目标的平近点角。经过修正,空间目标的视位置偏差得到改善,距离偏差能够从几百米减小到几十米,提升了预期回波到达时刻的准确度,可以给单光子探测器提供更高精度的距离门控,提高测距成功率。  相似文献   
5.
自适应光学技术应用于月球激光测距试验中需要实时针对月面扩展源进行大气波前倾斜量的提取,望远镜在跟踪月亮的过程中存在月面本身相对望远镜的物方视场的旋转以及望远镜自身的运动所引起的像方视场的旋转,本文讨论了望远镜物方视场及像方视场旋转的规律以及其对大气波前倾斜量提取的影响。  相似文献   
6.
通过利用Monte—Carlo方法对湍流相位屏模拟进行验证和分析。给出加入次谐低频补偿相位屏与直接谱反演相位屏的对比结果,并分析了在考虑内外尺度时次谐低频补偿方法的有效性。此外,给出了基于天文观测的多相位屏的湍流分层模型。在此基础上对天文成像进行数值仿真,并给出了仿真结果。  相似文献   
7.
首先通过对鹊桥卫星任务轨道进行分析,用数值方法模拟出一条近似鹊桥卫星探测任务的轨道,然后计算了2019年下半年云南天文台鹊桥卫星激光测距观测时间窗口,给出了鹊桥卫星到云南天文台的激光测距距离范围和鹊桥卫星运行轨道与月球的最小距离。基于模拟的晕轨道计算了鹊桥卫星激光测距单脉冲理论回波光子数和测距成功概率。根据月球激光测距积累的经验,结合影响测距的因素给出了提高激光测距回波光子数和测距成功率的改善方法。最后设计了等效试验方案,通过实测结果来验证理论计算,为实现鹊桥卫星激光测距提供依据。  相似文献   
8.
光度特性测量是获取空间目标的物理特性的重要技术手段之一,无论是光变曲线的事后分析还是建立光度变化的仿真模型,都离不开一个重要的参数——太阳相位角(太阳-空间目标-测站的空间夹角).目前空间目标的位置通常是通过双行根数(TLE)外推获得,存在一定误差,且随外推时间的延长而变大,因而有必要对其计算所得的太阳相位角的精度进行评估.以典型的不同高度的激光测距卫星LAGEOS1、AJISAI、STELLA为研究对象,以全球激光测距资料解算所得的高精度轨道作为参考轨道,对2012年全年利用双行根数计算所得的太阳相位角数据进行了比对分析,结果表明对于LAGEOS1、AJISAI这样的中高轨卫星,由于轨道较高,表征阻力的B*恒定,计算所得的太阳相位角偏差较小,角分量级,且随外推时间的延长不会导致偏差明显增大;而对于STELLA这样的低轨卫星,因轨道较低、受变化的大气的影响显著,计算所得的太阳相位角偏差较大,尤其是当B*比较大、变化较快时,偏差显著变大,且随外推时间的延长显著增大,在最差情况下:外推1d约为13',外推3d约为50',外推7d约为251',已超出目前的精度要求.因此,在事后分析中应尽可能使用1d之内的TLE计算太阳相位角,对于B*较大且变化较快情况尤其需要注意.另外,针对UTC闰秒的情况,提出了一种处理方法,即在双行根数外推时判断外推时段是否跨越了闰秒时刻,若跨越了则进行修正:增加或减少1s,相应地需要修改结果对应的时间戳计算方法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号