首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
地球科学   39篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Four drift accumulations have been identified on the continental margin of northern Norway; the Lofoten Drift, the Vesterålen Drift, the Nyk Drift and the Sklinnadjupet Drift. Based on seismic character these drifts were found to belong to two main groups; (1) mounded, elongated, upslope accretion drifts (Lofoten Drift, Vesterålen Drift and Nyk Drift), and (2) infilling drifts (Sklinnadjupet Drift). The drifts are located on the continental slope. Mainly surface and intermediate water circulation, contrary to many North Atlantic and Antarctic drifts that are related to bottom water circulation, and sediment availability have controlled their growth. Sediments were derived both from winnowing of the shelf and upper slope and from ice sheets when present on the shelf. The main source area was the Vøring margin. This explains the high maximum average sedimentation rate of the nearby Nyk (1.2 m/ka) and Sklinnadjupet (0.5 m/ka) Drifts compared with the distal Lofoten (0.036 m/ka) and Vesterålen (0.060 m/ka) Drifts. The high sedimentation rate of the Nyk Drift, deposited during the period between the late Saalian and the late Weichselian is of the same order of magnitude as previously reported for glacigenic slope sediments deposited during glacial maximum periods only. The Sklinnadjupet Drift is infilling a paleo-slide scar. The development of the infilling drift was possible due to the available accommodation space, a slide scar acting as a sediment trap. Based on the formation of diapirs originating from the Sklinnadjupet Drift sediments we infer these sediments to have a muddy composition with relatively high water content and low density, more easily liquefied and mobilised compared with the glacigenic diamictons.  相似文献   
2.
While there are extensive macro‐ and microfossil records of a range of plants and animals from the Quaternary, earthworms and their close relatives amongst annelids are not preserved as fossils and therefore the knowledge of their past distributions is limited. This lack of fossils means that clitellate worms (Annelida) are currently underused in palaeoecological research, even though they can provide valuable information about terrestrial and aquatic environmental conditions. Their DNA might be preserved in sediments, which offers an alternative method for detection. Here we analyse lacustrine sediments from lakes in the Polar Urals, Arctic Russia, covering the period 24 000–1300 cal. a BP, and NE Norway, covering 10 700–3300 cal. a BP, using a universal mammal 16S rDNA marker. While mammals were recorded using the marker (reindeer was detected twice in the Polar Urals core at 23 000 and 14 000 cal. a BP, and four times in the Norwegian core at 11 000 cal. a BP and between 3600–3300 cal. a BP), worm extracellular DNA ‘bycatch’ was rather high. In this paper we present the first reported worm detection from ancient DNA. Our results demonstrate that both aquatic and terrestrial clitellates can be identified in late‐Quaternary lacustrine sediments, and the ecological information retrievable from this group warrants further research with a more targeted approach.  相似文献   
3.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   
4.
A combination of AMS14C dating and tephrochronology has been used to date late Holocene oceanographic events in a 335 cm marine record, covering about 4600 cal. yr with sedimentation rates exceeding 80 cm 1000 yr−1. The core site is located 50 km offshore on the northern Icelandic shelf. Tephra markers from Iceland serve to correlate the marine and terrestrial records. Especially notable is the presence of three geochemically correlated tephra markers from the Icelandic volcano Hekla (Hekla 4, Hekla 3 and Hekla 1104). Benthic and planktonic foraminiferal abundance and distribution as well as the petrography of the sand fraction of the muddy shelf sediments are used as palaeoceanographic proxies. The foraminiferal assemblages reflect a general cooling trend during the last 4600 yr. A marked drop in sea‐surface temperatures is registered at about 3000 cal. yr BP, corresponding to the level of the Hekla 3 tephra. There is faunal indication of temperature amelioration during the Medieval Warm Period and a cooling again during the Little Ice Age. Periods of ice rafting events are indicated by ice rafted debris (IRD) concentrations, e.g. at around 3000 cal. yr BP and during the Little Ice Age. The former event occurred just prior to the deposition of the Hekla 3 tephra marker, the largest Holocene Hekla eruption. A correlation with terrestrial climatic events in Iceland is presented. A standard marine reservoir correction of 400 14C yr appears to be reasonable, at least during periods with high influence of water masses from the Irminger Current on the northern Icelandic shelf. An increase to ca. 530 14C yr may have occurred, however, when water masses derived from the East Greenland Current were dominant in the area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
5.
Volcanic ash preserved in marine sediment sequences is key for independent synchronization of palaeoclimate records within and across different climate archives. Here we present a continuous tephrostratigraphic record from the Labrador Sea, spanning the last 65–5 ka, an area and time period that has not been investigated in detail within the established North Atlantic tephra framework. We investigated marine sediment core GS16-204-22CC for increased tephra occurrences and geochemically analysed the major element composition of tephra shards to identify their source volcano(es). In total we observed eight tephra zones, of which five concentration peaks show isochronous features that can be used as independent tie-points in future studies. The main transport mechanism of tephra shards to the site was near-instantaneous deposition by drifting of sea ice along the East Greenland Current. Our results show that the Icelandic Veidivötn volcanic system was the dominant source of tephra material, especially between late Marine Isotope Stage (MIS) 4 and early MIS 3. The Veidivötn system generated volcanic eruptions in cycles of ca. 3–5 ka. We speculate that the quantity of tephra delivered to the Labrador Sea was a result of variable Icelandic ice volume and/or changes in the transportation pathway towards the Labrador Sea.  相似文献   
6.
Based on studies of sediment accumulations deposited from-and erode by-alongslope flowing ocean currents on the European continental margin from Porcupine (Ireland) to Lofoten (Norway), the evolution of the Cenozoic paleocirculation was reconstructed as part of the STRATAGEM project. There is evidence of ocean current-controlled erosion and deposition in the Rockall Trough, in the Faeroe-Shetland Channel and on the Vøring Plateau since the late Eocene, although the circulation pattern remains ambiguous. The late Palaeogene flow in the Rockall Trough was almost probably driven by southerly-derived Tethyan Outflow Water. The extent and strength of any northerly-derived flow is uncertain. From the early Neogene (early-mid-Miocene), there was a massive regional expansion of contourite drift development both in the North Atlantic and in the Norwegian-Greenland Sea. This was most probably related to the development of the Faroe Conduit, the opening of the Fram Strait and the general subsidence of the Greenland-Scotland Ridge. These may have combined to cause a considerable acceleration in the exchange and overflow of deep waters between the Arctic and Atlantic Oceans. An early late Neogene (late early Pliocene) regional erosional event has been ascribed to a vigorous pulse of bottom-current activity, most probably the result of a global reorganisation of ocean currents associated with the closure of the Central American Seaway. During the late Neogene, contourites and sediment drifts developed in deep-water basins, between units of glacigenic sediments as well as infill of several paleo-slide scars. These sediments were derived from areas of bottom-current erosion as well as from the development of Plio-Pleistocene prograding sediment wedges, incorporating the extensive sediment supply derived from shelf-wide ice sheets. Presently a profound winnowing prevails along the shelf and upper slope due to the inflowing currents of Atlantic water. Depocentres of sediments derived from the winnowing are located (locally) in lower slope embayments and in slide scars.  相似文献   
7.
Throughout the last 1.1 million years repeated glaciations have modified the southern Fennoscandian landscape and the neighbouring continental shelf into their present form. The glacigenic erosion products derived from the Fennoscandian landmasses were transported to the northern North Sea and the SE Nordic Seas continental margin. The prominent sub‐marine Norwegian Channel trough, along the south coast of Norway, was the main transport route for the erosion products between 1.1 and 0.0 Ma. Most of these erosion products were deposited in the North Sea Fan, which reaches a maximum thickness of 1500 m and has nearly 40 000 km3 of sediments. About 90% of the North Sea Fan sediments have been deposited during the last 500 000 years, in a time period when fast‐moving ice streams occupied the Norwegian Channel during each glacial stage. Back‐stripping the sediment volumes in the northern North Sea and SE Nordic Seas sink areas, including the North Sea Fan, to their assumed Fennoscandian source area gives an average vertical erosion of 164 m for the 1.1–0.0 Ma time period. The average 1.1–0.0 Ma erosion rate in the Fennoscandian source area is estimated to be 0.15 mm a?1. We suggest, however, that large variations in erosion rates have existed through time and that the most intense Fennoscandian landscape denudation occurred during the time period of repeated shelf edge ice advances, namely from Marine Isotope Stage 12 (c. 0.5 Ma) onwards.  相似文献   
8.
Boundary-Layer Meteorology - A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal...  相似文献   
9.
The South Iceland Lowland is an active seismic zone. In May 2008 a magnitude 6.3 (Mw) earthquake struck the area. The 370-m-long base-isolated Oseyrar Bridge situated close to the epicentre was hit by strong ground motion. Concrete stoppers at the top of all piers were badly smashed and all four wing walls of the abutments were severely damaged. The study showed that it is possible with numerical models to back-calculate the observed damage based on recorded ground motion in the area. The recorded loads were larger than prescribed by Eurocode 8 for the site even though the magnitude and location of the earthquake was as expected. The main reason was a near-fault pulse which is not covered in the code. The pulse dominated the bridge response and is therefore important to consider. Finally, an improved design is presented that could have prevented the damage.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号