首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
地球科学   9篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2010年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 515 毫秒
1
1.
2.
3.
Coda of local earthquakes that occurred during 2006–2007 are used to study the attenuation characteristics of the Garhwal–Kumaun Himalayas. The coda attenuation characteristics are represented in terms of coda Q or Q c . It is observed that Q c increases with frequency. Q c also varies with increase in lapse time of coda waves. Q c increases up to an 85-s average lapse time. This is similar to observations around the world reported by many workers who have interpreted this as a manifestation of the fact that heterogeneity decreases with depth. However, around a 90-s average lapse time Q c is lower than its values for lower and higher average lapse times. This is interpreted as an indication of possible presence of a fluid-filled medium or a medium having partial melts at around a 160-km depth. Q 0, i.e., Q c at 1 Hz, increases, and frequency parameter n decreases with increasing lapse time, barring around a 90-s lapse time. This again shows that in general, heterogeneity decreases with increasing depth. The Q 0 and n values for smaller lapse times are similar to those for tectonically active areas. By comparing Q c values obtained in this study with those obtained by us using the 1999 Chamoli earthquake aftershocks, it is concluded that the crust is turbid and the mantle is more transparent. However, whether the variation in Q c values between 1999 and 2006–2007 is temporal or not cannot be definitely established from the available data set.  相似文献   
4.
Chandra  Sagarika  Kumar  Praveen  Siingh  Devendraa  Roy  I.  Victor  N. Jeni  Kamra  A. K. 《Natural Hazards》2022,110(1):57-68

Physical phenomena observed before strong earthquakes have been reported for centuries. Precursor signals, which include radon anomalies, electrical signals, water level changes and ground lights near the epicenter, can all be used for earthquake prediction. Anomalous negative signals observed by ground-based atmospheric electric field instruments under fair weather conditions constitute a novel earthquake prediction approach. In theory, the abnormal radiation of heat before an earthquake produces fair weather around the epicenter. To determine the near-epicenter weather conditions prior to an earthquake, 81 global earthquake events with magnitudes of 6 or above from 2008 to 2021 were collected. According to Harrison's fair weather criteria, in 81.48% of all statistical cases, the weather was fair 6 h before the earthquake; in 62.96% of all cases, the weather was fair 24 h before the event. Moreover, most of these cases without fair weather several hours before the earthquake were near the sea. Among the 37 inland earthquakes, 86.49% were preceded by 6 h of fair weather, and 70.27% were preceded by fair weather for 24 h. We conclude that the weather near the epicenter might be fair for several hours before a strong earthquake, especially for inland events.

  相似文献   
5.
The floatability of silica has been determined by adsorbing various concentrations of a series of polyoxyethylated nonyl and octyl alkyl phenols of varying oxyethylene units (10–40 units) to investigate the role of adsorbed layer. It is seen that the floatability of silica increases with increase in concentration till a maximum of  90% in premicellar region and then decrease to minimum of 40–45% in all cases in spite of the significant differences in adsorption densities. Zeta potential measurement reveals that a thin oxyethylene layer is formed at silica–water interface masking silica surface (Pramila K. Misra, P. Somasundaran, J. Surf. Deterg., Vol. 7, 2004, 373). This layer with oxyethylene units lying on silica surface and alkyl chain dangling to the bulk solution provides the same extent of hydrophobicity. The decrease in flotation recovery has been attributed to increase in the solvent hydrophobicity due to formation of premicellar aggregates and micelles.  相似文献   
6.
7.
In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (?? v ) profile for the determination of mixed layer heights (MLH) and the mean value of turbulent flow depth (TFD) obtained from the vertical profile of Bulk Richardson Number (R i B ) have been used in this study. One-year data have been used for the study. There is large seasonal variability in MLH with a peak in the summer and winter whereas the TFD remained steady throughout the year. Results from the present study indicate that the magnitudes of TFD are often larger than the MLH.  相似文献   
8.
The attenuation characteristics of the Kinnaur area of the North West Himalayas were studied using local earthquakes that occurred during 2008–2009. Most of the analyzed events are from the vicinity of the Panjal Thrust (PT) and South Tibetan Detachment Thrust, which are well-defined tectonic discontinuities in the Himalayas. The frequency-dependent attenuation of P and S waves was estimated using the extended coda normalization method. Data from 64 local earthquakes recorded at 10 broadband stations were used. The coda normalization of the spectral amplitudes of P and S waves was done at central frequencies of 1.5, 3, 6, 9, and 12 Hz. Q p increases from about 58 at 1.5 Hz to 706 at 12 Hz, and Q s increases from 105 at 1.5 Hz to 1,207 at 12 Hz. The results show that the quality factors for both P and S waves (Q p and Q s) increase as a function of frequency according to the relation Q?=?Q o f n , where Q o is the corresponding Q value at 1 Hz frequency and “n” is the frequency relation parameter. We obtained Q p?=?(47?±?2)f (1.04±0.04) and Q s?=?(86?±?4)f (0.96±0.03) by fitting power law dependency model for the estimated values of the entire study region. The Q 0 and n values show that the region is seismically very active and the crust is highly heterogeneous. There was no systematic variation of values of Q p and Q s at different frequencies from one tectonic unit to another. As a consequence, average values of these parameters were obtained for each frequency for the entire region, and these were used for interpretation and for comparison with worldwide data. Q p values lie within the range of values observed for some tectonically active regions of the world, whereas Q s values were the lowest among the values compared for different parts of the world. Q s/Q p values were >1 for the entire range of frequencies studied. All these factors indicate that the crust is highly heterogeneous in the study region. The high Q s/Q p values also indicate that the region is partially saturated with fluids.  相似文献   
9.
This study evaluates changes in streamflow, temperature and precipitation over a time span of 105 years (1906–2010) in the Colorado River Basin (CRB). Monthly precipitation and temperature data for 29 climate divisions, and streamflow data for 29 naturalized gauges were analyzed. Two variations of the Mann-Kendall test, considering lag-1 auto correlation and long-term persistence, and the Pettitt test were employed to assess trends and shifts, respectively. Results indicated that streamflow increased during the winter–spring months and decreased during the summer– autumn period. Decreasing trends in winter precipitation were identified over snow-dominated regions in the upper basin. Significant increases in temperature were detected over several months. Major shifts were noticed in 1964, 1968 and in the late 1920s. Increasing temperature while decreasing streamflow and precipitation were noticed after major shifts in the 1930s, and these shifts coincided with coupled phases of El Niño Southern Oscillation and Pacific Decadal Oscillation.
EDITOR A. Castellarin; ASSOCIATE EDITOR R. Hirsch  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号