首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
地球科学   36篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  1991年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Izvestiya, Atmospheric and Oceanic Physics - The technique for constructing the spatial distribution of maximum aerosol optical depth (MAOD) has been used to estimate the optically dense haze...  相似文献   
2.
Quasi-horizontal trajectories of salting sand grains were found using high-speed video-recording in the desertified territory of the Astrakhan region. The sizes and displacement velocities of the saltating sand grains were determined. A piecewise logarithmic approximation of the wind profile in a quasi-stationary wind–sand flow is suggested, which is consistent with the data of observations and modeling. It was established that, in the regime of stationary saltation, the wind profile in the lower saltation layer of the wind–sand flow depends only slightly on the wind profile variations in the upper saltation layer. The vertical profiles of the horizontal wind component gradient in a quasi-stationary wind–sand flow were calculated and plotted. It was shown using high-speed video recording of the trajectory of a sand grain with an approximate diameter of 95 μm that the weightlessness condition in the desertified territory of the Astrakhan region in a stationary wind–sand flow is satisfied at a height of approximately 0.15 mm. The electric parameters of a wind–sand flow, which can provide for compensation of the force of gravity by the electric force, were estimated. In particular, if the specific charge of a sand grain is 100 μC/kg, the force of gravity applied to the sand grain can be compensated by the electric force if the vertical component of the electric field in a wind–sand flow reaches approximately 100 kV/m. It was shown that the quasi-horizontal transport of sand grains in the lower millimeter saltation layer observed in the desertified territory can be explained by the joint action of the aerodynamic drag, the force of gravity, the Saffman force, the lift force, and the electric force.  相似文献   
3.
Izvestiya, Atmospheric and Oceanic Physics - Measurements of electric currents of saltation in the wind-sand flux and currents caused by the wind transport of dust aerosol particles have been...  相似文献   
4.
Doklady Earth Sciences - Using the measurement data in a wind–sand flux on the desertified areas of Astrakhan oblast and Kalmykia, it has been established that the time variability of...  相似文献   
5.
6.
Izvestiya, Atmospheric and Oceanic Physics - Data on internal gravity and infrasound waves recorded during the passage of both warm and cold fronts throughout Moscow, which are associated with the...  相似文献   
7.
Doklady Earth Sciences - Vertical profiles of the total saltating particle concentration have been constructed for a range of wind speed changes in the surface layer of the atmosphere from 5.5 to...  相似文献   
8.
9.
A 3D eco-hydrodynamical model of high resolution (0.25° × 0.25°, 27 σ-levels) is used to simulate the seasonal variability of the ocean circulation and marine ecosystem in the Central-Eastern Basin of the North Atlantic including the Canary upwelling system. According to the model results, in the winter period, the “patches” of maximal phytoplankton and zooplankton biomass are often located in upwelling zones in the open ocean on the periphery of cyclonic eddies rather than in the coastal upwelling zones. In the summer period, when the phytoplankton biomass reaches maximal (in the annual cycle) values, the maxima of the phytoplankton are located in the coastal upwelling zones. As shown, there is no simple relationship between the nitrate distributions, on the one hand, and the phytoplankton and zooplankton ones, on the other hand.  相似文献   
10.
The evolution of smoke plume over European Russia (ER) during the massive forest and peatbog fires of summer 2010 has been studied using observations of aerosol optical depth (AOD) from MODIS instruments (both Aqua and Terra platforms), objective analysis of meteorological fields performed at the Russian Hydrometeorological Research Center, NCEP/NCAR reanalysis, as well as upper air data. A relation between the structure inhomogeneities of the AOD field and regional atmospheric circulation has been found. It is shown that, on August 5–9, 2010, the maximum of smoke pollution did complete turn around Moscow, while remaining at a distance of 200 to 650 km from the megacity. Both regionally averaged shortwave aerosol radiative forcings (ARFs) at the top and the bottom of the atmosphere are estimated for the period of extreme smoke pollution over ER. The spatial distributions of ARF values over the territory of the region and the estimates of the local and spatially distributed thermal effects of smoke aerosol are given. It is shown that, on August 5–9, 2010, the spatial distribution of AOD and the calculated thermal effects of smoke aerosol were in agreement with the spatial distributions of air-temperature anomalies observed in the lower 1.5-km layer of the atmosphere. MODIS’s AOD data obtained during the wildfires were validated by AOD observations from the CIMEL sun photometer operated at the AERONET station Zvenigorod.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号