首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   6篇
地球科学   8篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 93 毫秒
1
1.
崇明东滩盐沼潮沟水动力过程观测与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2007年7月在上海崇明东滩盐沼内部采用复合测量手段进行了现场观测,对取得的盐沼水动力过程数据进行了较系统的分析。崇明东滩盐沼内部的观测及分析结果表明:(1)潮沟及盐沼表面对潮波产生严重阻尼作用,潮波传播至盐沼内部时,潮沟水位波动明显异于外海,水位上升极快,而下降慢。当潮沟有退水时,涨潮初期的当地水位上升并不是潮水进入潮沟的结果,而是流向相反的潮沟进口涨潮水和潮沟内退潮水形成的水位壅高;(2)潮波进入盐沼内部时,风具有一定作用,向岸风可抬高潮沟及盐沼内部水位,离岸风反之;(3)潮沟水流流速与潮沟水位变化率、外海潮位变化率都不存在相关关系;(4)潮沟水位低时,过流断面较小,涨潮水进入潮沟时,潮沟水一旦改变流向,就具备很高的流速并伴随流速峰值的出现。潮沟水向盐沼表面漫溢时,过流断面突变,潮沟流速出现峰值。由于潮沟退潮水位变化慢,盐沼表面水归槽时并没有产生潮沟流速峰值。根据崇明东滩观测结果,概括了盐沼水动力过程的影响因素,指出了以后研究应重视的问题。  相似文献   
2.
河流潜流带是地表-地下水连通和交换的主要区域, 地表-地下水过程不仅促进了生源物质的迁移转化过程, 还能涵养水源、稳定区域生境, 为水生生物提供良好的栖息环境。因此掌握水生生物活动与地表-地下水交换关系是深刻认知和科学保护水生生态系统的关键。本文综述了前人有关水生生物活动反馈于地表-地下水交换过程的研究, 例如, 底栖微生物形成的生物膜可以吸收或滞留生源物质, 改变迁移的时间和路径; 水生动物的行为可能通过改变河床渗透系数和孔隙率等物理参数影响各类物质的地表-地下水交换通量; 水生植物对水流的阻滞和扰动也会作用于地表-地下水交换过程。基于目前研究, 本文提出了该领域的3个未来研究方向: 潜流交换和水生生物互馈理论, 水生生态功能与地表-地下水相互作用关系, 河流潜流带生物-地球-化学耦合过程。  相似文献   
3.
The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater?freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.  相似文献   
4.
河流中潜流交换研究进展   总被引:8,自引:1,他引:7       下载免费PDF全文
金光球  李凌 《水科学进展》2008,19(2):285-293
河水和地下水交换——潜流交换对溶质和污染物的归宿起着重要作用。潜流交换机理主要包括泵吸交换和冲淤交换。泵吸交换是由于河床形态引起的水头梯度,这些水头梯度诱导了对流传输;冲淤交换发生是由于移动河床截留和释放孔隙水。潜流交换的主要影响因素包括:河道流量、河床水力传导性、河床形态、河道弯曲、河床不均匀和背景条件。还探讨了反应性溶质、胶体颗粒共存情况下潜流交换的规律。对潜流交换研究现存的主要问题及未来研究展望提出了看法。  相似文献   
5.
基于洪潮预报的时效性和准确性要求,考虑洪水、天文潮、风暴潮等复杂因素的相互作用,建立了覆盖整个珠江三角洲网河区及口外海域的二维水动力学洪潮实时预报数值模型。模型中采用非结构有限体积法确保水量守恒,引入半隐欧拉-拉格朗日模式提高计算效率。通过嵌套南中国海潮汐风暴潮耦合模型,获取边界复合水位,同时利用回归系数法实时校正糙率系数,提高模型的预测精度。在此基础上利用Web Services、网络地理信息系统(WebGIS)等技术,对计算、演示、分析等组件进行集成,建立了基于三层B/S架构模式的珠江三角洲洪潮实时预报系统,并成功应用于"黑格比"(200814号)等台风暴潮的过程预报。  相似文献   
6.
潜流带是河流地表水和地下水交混区域,是河流中重要的物质能量交换和水生生物栖息的场所,而胶体颗粒在潜流带中沉积,会改变潜流带中的水动力结构和生态环境。本文利用室内循环水槽实验和多物理场耦合的数值模拟方法,旨在研究胶体颗粒在河流上覆水与潜流带中的迁移过程和胶体颗粒在潜流带中沉积分布特征及其对不同因素的响应规律。结果表明:河流上覆水中胶体会逐渐被河床截留且截留胶体集中于河床浅层;沙波水平方向截留量呈现出迎水面较高、背水面较低的趋势;胶体在潜流带沉积的主要机制是潜流交换、颗粒沉降与河床截留作用。本文能为胶体颗粒在潜流带中的生态环境作用研究提供科学依据,并为河流生态环境修复、河流健康管理提供理论支持。  相似文献   
7.
辛沛  金光球  李凌 《水科学进展》2009,20(3):379-384
滨海盐沼是重要的陆地-海洋交界带生态系统。目前国际上存在关于盐沼的两大假设:盐沼系统输出养分和盐沼植物带状分布。为验证这两大假设,增强对盐沼湿地的了解,盐沼孔隙水流动及溶质运移研究至关重要。为模拟复杂盐沼系统孔隙水流动及溶质运移,改进了美国地质勘测局编制的SUTRA程序。基于假定的潮沟横断面物理条件,对孔隙水流动及溶质运移过程进行了模拟分析。结果表明潮沟附近孔隙水及溶质交换较快,潮水浸淹会减缓潮沟附近出现物质集结。落潮时潮沟附近有明显垂向流和水平流,远潮沟地带主要为水平流。潮沟附近土壤通气条件较好。这些模拟结果较好的吻合了潮沟附近较盐沼内部盐沼植物长势较好的现象。  相似文献   
8.
生源物质作为影响水质的重要因素,其在河流中的迁移转换一直倍受关注。水沙界面物质交换过程受众多环境和水动力因素的影响,过程极其复杂,不仅影响着河流生源要素的通量演变规律,还关系到河流水环境问题。为探究水沙界面生源物质迁移转化过程及作用机制,结合国内外研究最新进展,对泥沙颗粒与生源物质的微界面作用、水沙界面对生源物质的迁移转化作用、水流条件对泥沙吸附解吸生源物质作用机理进行总结和概述,总结阐述了河流水质模型和闸坝泵条件下的水环境调控模型,最后指出平原河流水沙运动对生源物质输运作用机理及水环境调控。针对上述已有的研究成果和存在不足,对今后研究方向提出展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号