首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   5篇
地球科学   8篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
海泡石是一种纤维状含水的富镁硅酸盐黏土矿,其中的稀土元素含量在1×10~(-7)~1×10~(-5)之间,目前还没有建立海泡石中稀土元素的国家标准分析方法。测定岩石中的稀土元素主要是采用电感耦合等离子体质谱法(ICP-MS),样品前处理一般采用封闭溶矿和碱熔,但这两种处理方法耗时较长,效率不高。本文通过比较硝酸-氢氟酸-过氧化氢、硝酸-氢氟酸、硝酸-过氧化氢三种样品前处理方法,确定使用硝酸-氢氟酸溶矿,然后进行微波消解同时赶去氢氟酸,避免氢氟酸与稀土元素生成难溶的氟化物,再采用ICP-MS法测定15种稀土元素的含量。由于海泡石中的镁含量较高,为降低基体效应,以~(103)Rh和~(185)Re作内标补偿基体效应和校正灵敏度漂移,各元素测定值的准确性显著提高,回收率为91. 2%~110. 9%,检出限为0. 002~0. 011μg/L,精密度≤2. 79%。本方法与封闭酸溶ICP-MS法的分析结果吻合较好,且用酸量少(7 mL),溶矿效率高(1 h),检出限更低。  相似文献   
2.
采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。  相似文献   
3.
传统的氯化铵浸取-重铬酸钾滴定法(邻二氮菲比色法)可有效分析试样中较高含量的碳酸铁(7.5%~80%),但试剂消耗量大、测定步骤冗长、分析误差相对较大,水系沉积物中碳酸铁含量较低,采用此方法分析时其他含铁矿物的干扰易引入测量误差。本研究采用三氯化铝水浴加热浸取,建立了火焰原子吸收光谱法(FAAS)测定水系沉积物中低含量碳酸铁(0.1%~6.0%)的分析方法。使用80 m L浓度为100g/L的三氯化铝溶液水浴加热60 min,可完全浸取试样中的碳酸铁;在标准曲线中加入与待测样品浓度相同的三氯化铝,有效地避免了浸取剂三氯化铝的基体干扰。碳酸铁的检出限为0.015μg/m L,精密度为2.3%~4.0%(n=12),加标回收率为95.0%~107.5%。沉积物中常见的含铁矿物(如赤铁矿和磁铁矿)对碳酸铁的测定干扰可忽略,磁黄铁矿的干扰可通过加入氯化汞消除。本法比传统化学分析方法的操作简便,准确度和精密度高,解决了其他含铁矿物的干扰问题。  相似文献   
4.
高压密闭消解因称样量小、用酸量少、空白低等优点成为测定稀土元素前处理的主要方法。但锰矿石组分复杂,锰含量差别较大且具有多种不同价态,常含有伴(共)生金属和其他杂质,该方法采用常规酸溶体系很难将其消解完全,造成ICP-MS测试结果不准确。本文从样品前处理消解效果出发,选择锰矿石标准物质GBW07261、GBW07263、GBW07266和一个锰矿石样品,试验了三种酸溶前处理方法对锰矿石稀土元素测试的影响。结果表明:方法一(氢氟酸-硝酸密闭消解,硝酸复溶提取)不能将锰矿石样品完全消解,测定值偏低0. 28%~61. 31%;方法二(氢氟酸-硝酸-双氧水密闭消解,硝酸-双氧水复溶,硝酸提取)和方法三(氢氟酸-硝酸密闭消解,盐酸复溶,硝酸提取)均可将锰矿石样品消解完全,用ICP-MS测定稀土元素的数据较为接近,与传统的过氧化钠熔融ICP-MS法测定值吻合。但实验过程中发现对于锰含量较高的样品,方法三需多次重复加入盐酸复溶后方可将样品消解完全,而方法二复溶一次即可。因此,方法二对锰矿石样品的消解效率更高,精密度好(0. 96%~2. 68%),加标回收率在95. 0%~107. 0%之间,更适用于锰矿石中稀土元素的分析。  相似文献   
5.
萤石中稀土元素的研究对揭示成矿物质来源、成矿流体的性质和矿床成因均具有十分重要的意义。传统的过氧化钠碱熔-电感耦合等离子体质谱(ICP-MS)分析方法可以解决萤石中稀土元素的测定问题,但过氧化钠提纯难度高,过程繁杂,不宜大量样品的处理,且待测溶液总盐度大易产生基体干扰等;常规的酸溶法因使用的试剂一般为硝酸和氢氟酸,这些酸均不与萤石的主要成分氟化钙发生反应而很少应用。本文基于氟化钙能溶于硫酸和硼酸,采用硼酸溶液(10%硫酸和25%盐酸介质)和氢氟酸处理样品,硝酸提取,引入103Rh和185Re双内标,建立了硼酸溶液敞口酸溶ICP-MS测定萤石中稀土元素的分析方法。相比于传统的过氧化钠碱熔方法,本方法采用的试剂纯度高,可以有效地降低空白,方法检出限为0.002~0.016μg/g,低于过氧化钠碱熔方法的检出限(0.006~0.058μg/g),回收率在94.0%~107.6%之间,方法精密度(RSD)为0.7%~2.7%。本方法配制的硼酸溶液能够有效地与萤石反应,可充分分解萤石样品,简化了样品处理流程,有效地控制了稀土元素的损失,数据可靠性高,适用于大量萤石样品的稀土元素分析。  相似文献   
6.
王福  吴良英 《华北地质》2009,32(4):310-316
现代沉积物测年已经成为海岸带地区百年以来的现代地质过程重建的重要定量方法。笔者系统总结了利用低本底高纯锗γ能谱仪进行比活度测试样品的取样、样品前处理、测试、比活度计算和数据解释方法的全过程,并介绍了由此获得的测年数据在海岸带地区经济建设中的实际应用。以天津海岸带为例,现代沉积物测年研究始于20世纪80年代末,首次开展的工作是针对天津港附近海区的现代沉积速率研究。此后,处于停顿期,直至20世纪90年代末,在国土资源大调查项目的支持下,天津地质调查中心复又开展了现代沉积速率的研究。至今,已基本掌握了天津沿海低地、潮间带及部分浅海区的现代沉积特征,从而填补了现代地质环境演化和趋势预测的一个重要定量指标—现代沉积速率的空白。同时,天津地调中心还籍此在海岸带地区开展了探索性的应用研究,如对活动断层百年以来活动性的评价和对海区活体牡蛎礁所处的建礁阶段的判定等。  相似文献   
7.
海泡石是一种应用广泛的纤维状富镁硅酸盐黏土矿物,主要成分为硅和镁,伴有铝钾钠等杂质,测定海泡石主量成分含量对于矿物性能的综合评价具有重要意义。海泡石主量元素分析通常采用经典化学法,样品碱熔处理后使用容量法、光度法、原子吸收光谱法测定,操作繁琐,耗时长,且无法同时测定钾钠。本文建立了一种氢氟酸-硝酸-高氯酸敞口酸溶样品,ICP-OES测定海泡石中氧化铝等主量成分的方法。对氢氟酸的用量进行了优化,选择Al 396.153nm、Ti 334.940nm、K 766.490nm、Na 589.592nm、Ca 422.673nm、Mg 285.213nm、Fe 238.204nm作为分析谱线,采用轴向观测方式进行测量。由于海泡石中的镁含量较高,用ICP-OES测定时存在基体效应,通过配制系列高镁混合标准溶液以匹配基体。ICP-OES法同时测定铝钛钾钠钙镁铁各元素标准曲线线性相关系数均大于0.9990,方法检出限为0.53~3.25μg/g,测定结果的相对标准偏差(RSD,n=10)为0.66%~5.65%,各元素回收率为95.3%~108.5%。本方法采用的酸溶前处理方式较碱熔操作更加简单,测定结果与经典化学方法所得结果吻合较好,能够满足海泡石样品的分析需求。  相似文献   
8.
钨钼矿石是重要的战略性矿产资源,中国是钨钼矿的产出和消费大国,准确、高效地分析钨钼及其共伴生的有益有害元素含量对钨钼矿的矿床评价和综合利用有重要意义。钨钼矿石中钨钼及伴生元素的分析目前主要采用酸溶和碱熔方式消解样品,酸溶方式在处理高钨钼样品时无法克服水解问题,过氧化钠、氢氧化钠等碱熔方式通常会引入大量碱金属,不能完成钾钠的测定。本文建立了一种偏硼酸锂熔融,盐酸-酒石酸超声浸取,电感耦合等离子体发射光谱(ICP-OES)同时测定钨钼矿石中钨钼铜铅锌铝铁钙镁钛锰钾钠的方法。利用偏硼酸锂熔融的强解离作用使样品完全分解,溶液除硼锂外不引入其他金属元素,在盐酸提取液中加入酒石酸络合能够有效抑制钨钼水解,经超声浸取加快了熔块溶解。实验优化了各元素的分析谱线和观测方式,对熔剂用量以及仪器条件进行对比实验以获得最佳条件,采用基体匹配法绘制标准曲线消除了基体效应的影响。标准曲线线性相关系数均大于0.9990,方法检出限为1.34~46.2μg/g,标准物质测定结果的相对误差为0.14%~8.7%,相对标准偏差(RSD,n=10)为1.4%~7.6%。该方法能够准确、高效地完成钨钼矿石样品中多元素的同时测定。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号