首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   13篇
  国内免费   6篇
地球科学   462篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   18篇
  2012年   17篇
  2011年   23篇
  2010年   17篇
  2009年   25篇
  2008年   18篇
  2007年   22篇
  2006年   11篇
  2005年   13篇
  2004年   22篇
  2003年   20篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   11篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   8篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1973年   8篇
  1971年   2篇
排序方式: 共有462条查询结果,搜索用时 22 毫秒
1.
2.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   
3.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
4.
生态模型在河口管理中的应用研究综述   总被引:1,自引:0,他引:1  
河口作为河流和海洋的交汇地,具有生态交错带特性,其在自然和人类活动双重压力下发生着演变.生态模型是研究生态系统结构、功能及其时空演变规律以及生物过程对于生态系统的影响及其反馈机制的重要手段.采用不同方法对生态模型进行分类,综述各类生态模型的特性、优缺点及应用领域.讨论建模过程中模型变量与函数、模型整合及时空尺度、模型参数取值及不确定等关键技术问题.分析各类生态模型在河口生态工程设计、生态系统修复、生态系统评价、系统决策支持等管理领域的应用.尽管中国河口生态模型构建及应用已有一些成果,但与国外相比,在理论生态学及数据积累方面仍有一定差距.  相似文献   
5.
6.
7.
Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.  相似文献   
8.
The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP—maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity—and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.  相似文献   
9.
From 2009 to 2011, marine spatial planning (MSP) rapidly gained visibility in the United States as a promising ocean management tool. A few small-scale planning efforts were completed in state waters, and the Obama Administration proposed a framework for large-scale regional MSP throughout the U.S. Exclusive Economic Zone. During that same time period, the authors engaged a variety of U.S ocean stakeholders in a series of dialogs with several goals: to share information about what MSP is or could be, to hear stakeholder views and concerns about MSP, and to foster better understanding between those who depend on ocean resources for their livelihood and ocean conservation advocates. The stakeholder meetings were supplemented with several rounds of in-depth interviews and a survey. Despite some predictable areas of conflict, project participants agreed on a number of issues related to stakeholder engagement in MSP: all felt strongly that government planners need to engage outsiders earlier, more often, more meaningfully, and through an open and transparent process. Equally important, the project affirmed the value of bringing unlike parties together at the earliest opportunity to learn, talk, and listen to others with whom they rarely engage.  相似文献   
10.
Thermal methods are promising for remediating fractured geologic media contaminated with volatile organic compounds, and the success of this process depends on the coupled heat transfer, multiphase flow, and thermodynamics. This study analyzed field‐scale removal of trichloroethylene (TCE) and heat transfer behavior in boiling fractured geologic media using the multiple interacting continua method. This method can resolve local gradients in the matrix and is less computationally demanding than alternative methods like discrete fracture‐matrix models. A 2D axisymmetric model was used to simulate a single element of symmetry in a repeated pattern of extraction wells inside a large heated zone and evaluate effects of parameter sensitivity on contaminant recovery. The results showed that the removal of TCE increased with matrix permeability, and the removal rate was more sensitive to matrix permeability than any other parameter. Increasing fracture density promoted TCE removal, especially when the matrix permeability was low (e.g., <10?17 m2). A 3D model was used to simulate an entire treatment zone and the surrounding groundwater in fractured material, with the interaction between them being considered. Boiling was initiated in the center of the upper part of the heated region and expanded toward the boundaries. This boiling process resulted in a large increase in the TCE removal rate and spread of TCE to the vadose zone and the peripheries of the heated zone. The incorporation of extraction wells helped control the contaminant from migrating to far regions. After 22 d, more than 99.3% of TCE mass was recovered in the simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号