首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
  国内免费   4篇
地球科学   10篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
闪电电场变化测量系统是目前用于闪电物理研究以及闪电定位的重要手段之一, 提高测量系统的探测性能, 对于推动闪电物理以及闪电定位的研究具有重要作用。根据电磁感应原理, 研制出探测带宽为10 Hz~5 MHz的新型闪电电场变化测量仪。并进行了实验, 标定了测量仪输出信号与电场变化信号在频域上的数值关系。利用三套测量仪系统对南京多个强雷暴过程展开同步探测, 利用获取的数据反演了负地闪电场波形。对探测到的58次负地闪波形特征进行统计, 与国内外统计结果进行对比分析, 发现各个地区的负地闪预击穿过程和首次回击电场波形特征存在较大差异。   相似文献   
2.
利用安装于广州塔塔顶500 m的大气电场仪(简称电场)数据、广州双偏振雷达资料、粤港澳闪电定位系统数据和ERA5再分析资料等数据,对比分析了2020年8月15日和9月23日广州两次雷暴天气过程的地闪活动特征以及地闪活动与电场变化特征的关系。结果表明:由局地热力不稳定引起的“局地性雷暴”地闪频次低、伴随弱降水,而由中尺度系统引发的“系统性雷暴”地闪频次高、伴随短时强降水。两次过程的地闪频次和电场变化呈双峰分布,地闪爆发时电场变化显著,频域能量达到峰值。“系统性雷暴”的消亡阶段电场在正负极之间大幅度缓慢波动,呈现阻尼振荡(End Of Storm-Oscillation,EOSO)特征,而“局地性雷暴”消亡时电场未出现此特征。时域下电场剧烈变化和频域能量明显提高时,意味着雷暴云团正在靠近或附近有闪电发生;电场频域能量迅速减小且集中于低频段,表明雷暴正在消亡或远离测站。电场的时频特征对雷暴的生消具有指示性作用,为电场数据与其他资料融合应用于雷电风险预警予以参考。  相似文献   
3.
基于触发闪电开展了电流注入地网后地电位抬升反击氧化锌电涌保护器的试验研究。结合真实雷电环境下测量的电涌保护器两端残压和流经电流的数据, 对一次触发闪电引发的氧化锌电涌保护器损坏事件进行了分析。分析发现, 电流注入地网后, 回击过程瞬间的大能量和长连续电流过程累积的能量相互叠加共同作用损坏了氧化锌电涌保护器。回击发生时, 较大的地电位抬升反击特别是电压的快速上升阶段, 氧化锌电涌保护器内部半导体结构(晶界层或晶粒)很容易遭到局部破坏, 形成穿孔, 电压波沿着破坏的晶界层“漏洞”迅速通过, 氧化锌电阻片失去钳制作用, 而当电压缓慢下降时, 电压在氧化锌电涌保护器内部晶界层的分布趋于均匀, 没有损坏的晶界结构又恢复了氧化锌电涌保护器的钳制功能。长连续电流过程形成的残压较小, 但其持续时间很长, 可达几十甚至上百毫秒, 事件中多次致使SPD钳制功能的失效。4次回击过程地电位抬升反击流经氧化锌电涌保护器的电流峰值最大为7.1 kA, 平均值5.4 kA, 占触发闪电注入电流的28.9%。流经SPD的电量范围0.15~0.58 C, 平均值0.44 C, 其值大于8/20 μs标称放电电流20 kA单脉冲释放的电量(0.37 C)。   相似文献   
4.
基于2017年5月8日华南地区一次典型飑线过程, 分析了此次过程中闪电活动和-35~0℃温度层内双偏振雷达参量的分布特征以及双偏振雷达参量与闪电活动之间的关系。结果表明: 此次飑线过程中, 双偏振雷达参量与闪电频次的趋势在时间变化上有较好的一致性, 且随着闪电活动的发生及雷暴过程的增强, 双偏振雷达参量中的冰水含量、雷达反射率因子、差分反射率、差分相移率等偏振参量都有不同程度的增加, 闪电频次高峰时间段对应各个参量最大值时间段。双偏振雷达各个参量最大值与闪电活动的线性拟合关系均优于多项式拟合关系。定性地发现了双偏振雷达参量与闪电活动的关系, 可为将来将双偏振雷达参量加入到闪电临近预警预报提供一定的参考依据。   相似文献   
5.
为了探讨对流强度大小对雷暴云内微物理发展和起电过程的影响,基于已有的二维积云起、放电模式,改变其扰动温度进行敏感性试验。试验结果表明:对流强度对雷暴云内微物理过程、起电率及后续电荷结构的产生均有一定程度的影响:1)对流强度较小时,冰晶粒子极大值在高温区(高于-13.8℃)出现,对流强度较大时,上升风明显增强,将更多的水汽带入高空,气溶胶活化过程明显增强,使得云滴粒子明显增多,冰晶粒子较早产生,冰晶粒子极大值在低温区(低于-13.8℃)出现,发展过程更为剧烈;同时,较高的对流强度也使得降雨量增多,霰粒子数目也在对流发展旺盛时期显著增多。2)非感应起电率主要和冰晶-霰的碰并分离过程有关,对流强度较大时,非感应起电率较大,电荷结构持续时间较长,过程明显,感应起电率也较强。3)对流强度较大时,电荷结构更为复杂,雷暴云发展初期基本呈现为三极性,发展旺盛时期底部正电荷区域嵌入一个较小的负电荷区,呈现四极性电荷结构,雷暴云发展末期基本呈现偶极性电荷结构;对流强度较小时,发展初期、旺盛时期均呈现三极性电荷结构,发展末期呈现偶极性电荷结构。  相似文献   
6.
对2019年夏季广州市从化区3个雷暴过程中7次触发闪电过程的39次继后回击和10次M分量及其对应的地电位抬升(ground potential rise,GPR)电压数据进行统计分析。分析发现:39次继后回击对应的地电位抬升电压峰值几何平均值能达到-138.97 kV,且波形具有明显的次峰,次峰几何平均值为-90.09 kV,约为最大峰值的64.86%;继后回击引起的地电位抬升电压主要由雷电流泄放引起(相关系数为0.94),感应耦合作用相对较弱(相关系数为0.55),而M分量过程对应的地电位抬升电压则均由雷电流泄放引起(相关系数为0.99)。在雷电流瞬间冲击下,继后回击和M分量过程时的冲击接地电阻均小于工频接地电阻,M分量过程的冲击接地电阻平均值为12.02 Ω,继后回击过程为10.87 Ω。M分量半峰宽度可达毫秒量级,会使浪涌保护器长时间处于动作状态,极易引起浪涌保护器热崩溃损坏。  相似文献   
7.
2020年12月,广东省ADTD(Advanced TOA and Direction)闪电定位系统升级改造为DDW1全闪三维闪电定位系统,于2021年1月业务运行,使得广东省拥有了闪电三维定位业务观测能力。DDW1闪电定位系统不仅在硬件性能、数据处理、探测效率和定位算法等方面有提高,同时还新增了闪电辐射源的三维定位功能。基于DDW1闪电定位系统观测数据和广州S波段双极化天气雷达资料,分别对广东省2021年闪电时空分布以及一次飑线系统云闪三维分布特征进行分析。分析结果表明,闪电活动主要出现在5—9月,占总数92.9%,闪电活动多发时段为13—18时,占总数53.1%;广东省闪电聚集区分布在地势较低的珠三角和粤西地区,地势高的山地地区闪电活动相对较少;云闪辐射源主要出现在强对流区底部,高度主要分布在1~5 km,占总数61.3%,一定程度上刻画了雷暴云中电荷区的分布情况。全闪定位结果与对应时刻雷达回波具有高度一致性。  相似文献   
8.
针对闪电光学观测资料定量分析的需求,采用张正友平面标定法结合便携式平面靶标,实现了闪电外场试验中光学观测设备的现场标定,为消除光学系统成像畸变对闪电通道特征分析的影响提供了一种便捷的途径。使用此方法对广州高建筑物雷电观测站(TOLOG)的6套闪电光学观测设备进行了标定,结果表明:光学观测设备搭载同类型镜头时,焦距越短图像的畸变越明显; 图像中视线与光轴的夹角越大,径向畸变的影响越明显,采用鱼眼镜头获得的闪电通道图像在靠近边缘的位置畸变的影响会超过25%;通过对配备焦距为8 mm鱼眼镜头的单反相机以及配备焦距为8 mm广角镜头的高速摄像机同时获取的闪电光学同步资料进行畸变校正后,发现获取的图像畸变校正前后闪电通道总体长度差异分别为12.9%和4.5%;经过畸变校正后不同设备获取的闪电通道图像比原图拥有更好的一致性。   相似文献   
9.
雷暴云内电荷水平分布形式对闪电放电的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
为了定量探究雷暴云内电荷水平分布形式对闪电类型和先导传播行为的影响,建立了典型雷暴云电荷结构模型,引入控制电荷水平分布的参数,利用改进的随机放电参数化方案,开展二维高分辨率模拟试验。结果表明:主正电荷区电荷水平分布不均匀且向中心聚集时,产生的闪电类型多为正地闪和正极性云闪,随着电荷水平分布趋于均匀,闪电类型转变为负地闪;主负电荷区电荷水平分布趋于均匀时,闪电类型由负地闪向正极性云闪再向正地闪转变;闪电先导传播特征有较大差异,电荷分布密集不均匀时,先导被束缚在电荷高密度中心,主要在电荷区内发展,当电荷分布单一均匀时,先导能穿出电荷区并水平延伸十几至二十多千米。分析两个电荷区之间的电位分布发现,电荷区电荷水平分布趋于均匀时,位势线向电荷密度中心集中,整个位势阱水平延展,闪电触发点的初始电位值有较大差异,有利于闪电类型和先导传播行为的改变。  相似文献   
10.
在电子电气系统接地领域,地电位抬升对电子设备的破坏效应一直是人们关注的焦点。基于触发闪电技术,开展了地网地电位抬升冲击电涌保护器(surge protective device,SPD)的观测试验,重点分析了触发闪电初始长连续电流过程对SPD的冲击和损坏效应。结果发现,触发闪电注入地网后,闪电的初始长连续电流和继后回击的共同作用下很容易造成额定通流量的SPD损坏,当流经SPD的能量累积达到一定程度时仅初始长连续电流过程也会损坏SPD;冲击SPD的效应与初始长连续电流过程的不同的波形密切相关,当长连续电流过程叠加上升沿较快幅值较大的初始连续电流脉冲(ICCP,initial continuous current pulse)时,流经SPD的能量会迅速增加,是长连续电流过程中SPD损坏的最为关键因子。个例分析发现,当初始长连续电流过程持续时间和平均电流量级达到100 ms和200 A左右,泄放电量为25 C,流经SPD的能量达1000 J左右,易造成标称放电电流20 kA甚至更高的SPD损坏。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号