首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   8篇
农业科学   12篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
基于改进空间引力模型的农作区遥感影像亚像元定位   总被引:1,自引:1,他引:0  
针对空间引力模型在遥感影像亚像元定位中存在的不足,该文提出了一种基于改进空间引力模型的农作区遥感影像亚像元定位方法。研究首先分析了原始空间引力模型运行速度慢、定位精度低的原因。然后,分别改进了空间引力模型的初始化算法和优化算法,改进后的初始化算法使亚像元更具空间相关性;改进后的优化算法在初始化的基础上显著提高了模型的运行速度和定位精度。最后,以吉林省镇赉县农作区SPOT-5影像为例,在原图像空间分辨率退化4倍的尺度下进行遥感影像亚像元定位试验。结果表明,改进模型与原始模型相比亚像元定位精度提高了6.67个百分点,运行速度提高了10.69倍。因此,改进空间引力模型在地物类别相对复杂的农作区遥感影像亚像元定位中,可以更好的突破空间分辨率的限制,为确保农作物种植面积提取、区域产量遥感估测提供有力支撑。  相似文献   
2.
在中国黄淮海粮食主产区选择河北省衡水深州市为试验区,以冬小麦地上干生物量为研究对象,以作物冠层高光谱和EO-1 Hyperion高光谱卫星数据为主要数据源,在分析冠层高光谱构建的窄波段植被指数(N-VIs)与实测冬小麦地上干生物量间相关性基础上,提出了利用拟合精度R~2极大值区域重心确定冬小麦干生物量敏感的光谱波段中心的方法,并运用该方法确定了冬小麦生物量敏感波段中心。在此基础上,以敏感波段中心筛选结果为指导,利用窄波段植被指数及相关波段开展Hyperion高光谱卫星遥感区域冬小麦干生物量遥感反演和精度验证。最终,按精度最高原则优选区域冬小麦地上生物量反演结果。其中,研究采用了冬小麦孕穗期Hyperion数据,涉及的植被指数包括窄波段归一化植被指数(N-NDVI)、窄波段差值植被指数(N-DVI)和窄波段比值植被指数(N-RVI)。结果表明,通过与实测冬小麦地上干生物量对比,利用冠层高光谱冬小麦地上干生物量反演敏感波段筛选结果及其相应波段构建的Hyperion窄波段植被指数进行孕穗期作物干生物量估算取得了较好结果,其精度由大到小为:N-NDVI、N-RVI、N-DVI。其中,以波段B_(18)(波长528.57nm)、波段B_(82)(波长962.91nm)构建的Hyperion N-NDVI估算区域冬小麦地上干生物量精度最高,相对误差(RE)和归一化均方根误差(NRMSE)分别为12.65%和13.78%,证明本研究提出的区域冬小麦地上干生物量反演方法具有一定可行性,为高光谱遥感卫星数据敏感波段选取和提高农作物生物理化参数定量遥感精度提供了一定思路借鉴。  相似文献   
3.
遥感技术获取的区域作物面积与作物面积统计数据间常常存在不一致的问题,这在一定程度上影响了作物分布遥感制图信息的应用。为获得与作物面积统计数据一致的高精度作物分布遥感制图信息,该研究以河北省衡水市武邑县为研究区,以时序Sentinel-2遥感影像生成的归一化差值植被指数(Normalized Difference Vegetation Index, NDVI)为研究数据,将冬小麦面积目视解译数据作为遥感提取的区域冬小麦面积总量参考,提出基于复合型混合演化算法(Shuffled Complex Evolution-University of Arizona, SCE-UA)和区域作物种植面积总量控制的NDVI时序相似性阈值优化冬小麦分布制图方法,并进行精度验证。在此基础上,进一步开展不同生育阶段NDVI时序相似性及其相似性组合的冬小麦分布提取精度对比研究。结果表明,利用全生育期NDVI时序相似性获得的冬小麦分布制图结果总量精度达99.99%以上,总体精度达98.08%,Kappa系数为0.96,可以保证遥感提取的区域冬小麦面积与冬小麦种植面积总量控制参考间的高度一致性且能获得较高的作物遥感识别精度。从不同生育阶段NDVI时序相似性及其相似性组合的冬小麦分布提取结果可知,利用出苗期-分蘖期、返青期-拔节期的NDVI时序可获得高精度冬小麦分布提取结果,而利用抽穗期-成熟期的NDVI时序数据提取冬小麦结果则精度较低,且综合不同生育阶段NDVI时序数据有利于冬小麦制图精度的提高。该研究可为高精度冬小麦分布提取和制图技术及其方案优化提供一定参考依据,也可为遥感数据和作物面积统计数据融合的大范围农作物分布遥感制图及统计数据空间化提供一定技术方法参考和思路借鉴。  相似文献   
4.
【目的】通过对河南省2001—2015年间不同时期(2001—2005、2006—2010及2011—2015年)冬小麦种植频率(winter wheat planting frequency,WWPF)时空变化及其主要影响因素定量分析,进一步明晰区域作物种植频率变化时空变化分布特征和主要影响因素顺序。【方法】以河南省为研究区,冬小麦为研究作物,在利用中低分辨率MODIS EVI时序遥感数据和CART决策树算法进行连续15年(2001—2015年)作物种植空间分布信息提取基础上,获取了研究区不同时期冬小麦种植频率空间信息。在此基础上,开展不同时期冬小麦种植频率时空变化分析,并利用相关分析、主成分分析和线性回归分析等数理统计方法对不同时期研究区种植频率变化的影响因素进行分析,最终确定主要影响因素的重要性排序。【结果】基于MODIS EVI时序遥感数据和CART决策树算法可获得河南省较高精度连续多年冬小麦种植空间分布信息,经验证,研究区冬小麦遥感提取平均总体精度为90.39%,Kappa系数在0.82—0.92之间,可满足区域冬小麦种植频率变化研究所需作物空间分布精度要求;通过分析河南省不同时期冬小麦种植频率时空变化信息,省域内冬小麦主产区大部分具有较高的冬小麦种植频率(WWPF>80%),而豫西南和豫南等山区由于地形复杂、自然条件较差导致冬小麦种植频率普遍较低(WWPF≤40%)。此外,3个时段期间,河南省冬小麦主产区高频种植冬小麦面积呈逐步增加趋势,WWPF>80%的面积比例分别为42.68%、59.94%和63.07%,低频种植面积呈减小趋势,WWPF≤40%的面积比例分别为28.53%、17.99%和16.63%,这对我国冬小麦主产区稳定粮食种植面积具有重要意义;从冬小麦种植频率影响因素分析结果看,河南省冬小麦种植频率与有效灌溉面积比例、土壤质量综合指数、播期气候适宜度、坡度和高程等指标间均存在显著的相关性,且除与坡度、高程呈负相关外,与其余因素均为正相关关系。以上指标对河南省冬小麦种植频率变化影响程度的排序结果为土壤综合质量指数>播期气候适宜度>有效灌溉面积比例>坡度(高程),即土壤质量>播期气候条件>灌溉条件>地形条件。【结论】通过对河南省冬小麦种植频率时空变化及其影响因素进行定量分析,明确了河南省冬小麦种植频率时空分布特征和变化规律,明晰了河南省区域冬小麦种植频率变化影响因素及其重要性排序,为开展作物种植面积变化分析提供了一定技术方法和思路借鉴,为区域农业土地利用决策模型构建提供一定基础理论支撑。  相似文献   
5.
针对中国北方部分农区夏秋两季易受长时间云、雨、雾影响导致区域农用地信息难以实时准确获取的现状,在Freeman极化分解模型基础上,该文提出了一种三分量极化分解优化模型农用地合成孔径雷达(SAR)影像自动提取方法,并开展不同作物覆盖条件下农用地信息提取试验研究。该文首先通过引入体散射分量参数,二次散射分量参数和布拉格散射分量参数,对现有Freeman极化分解模型进行优化,使分解结果更符合农业区域不同地物散射特征;然后,在利用优化三分量极化分解方法提取极化分量基础上,结合模糊C均值聚类,实现农用地信息高精度自动提取。最后,该研究以中国重要黄淮海农业区河北衡水枣强县为试验区,以Radarsat-2影像为试验数据源,在作物全覆盖和作物部分覆盖2种条件下,通过将优化三分量-FCM分类和常用雷达分类方法 H-Alpha-Lambda分类的农用地提取结果与地面验证样方进行对比,完成该研究所提出SAR影像农用地提取方法的精度验证和评价。结果表明,在作物全覆盖条件下,利用优化三分量-FCM分类提取农用地信息的总体精度和Kappa系数分别为96.12%和0.857,较H-Alpha-Lambda分类方法分别提高了8.69个百分点和0.337;在作物部分覆盖条件下,利用优化三分量-FCM分类提取农用地信息的总体精度和Kappa系数分别为97.53%和0.902,较H-Alpha-Lambda分类分别提高了17.37个百分点和0.595。可见,无论在作物全覆盖还是部分覆盖条件下,优化三分量-FCM分类方法提取的农用地精度均优于H-Alpha-Lambda分类方法,证明了该算法提取农用地信息具有一定可行性和适用性,为SAR影像在农业遥感应用中的农用地信息提取提供了新的思路。  相似文献   
6.
基于参数型指数混合熵模型的农业遥感分类不确定性评价   总被引:1,自引:0,他引:1  
针对对像元尺度上独立于分类方法的不确定性评价的需要和对数混合熵函数在评价遥感影像分类不确定性中存在的不足,该文提出了一种基于参数型指数混合熵模型的农业遥感影像分类不确定性评价方法。研究首先对指数混合熵函数进行改进,推导出参数型指数混合熵函数并确定出适合于评价农作区遥感影像分类的参数;然后,使用该函数建立一种像元尺度上独立于分类的不确定性评价模型;最后,将该模型应用于空间分辨率退化10倍的SPOT-5影像中,并使用原始影像对评价结果进行验证。试验结果表明,当模型中参数型指数混合熵函数的参数分别为4和1时,该函数比对数混合熵函数更好地统一了模糊性和随机性,熵值范围提高了2.11倍。该模型不确定性评价结果与原始影像3种分类的不确定像元比例相关系数分别为0.60、0.66、0.70,评价结果较为准确。因此,该模型可以在像元尺度上独立于分类方法将地物类别相对复杂的农业遥感影像分类不确定性更为精确地表达出来,为确保农作物种植面积提取、区域产量遥感估测精度提供了有力支撑。  相似文献   
7.
亚像元定位技术对地表遥感信息提取及农业遥感定量化发展具有重要意义。针对当前国内外亚像元定位研究多集中于亚像元定位模型而缺少模型定位精度影响因素分析的现状,该文开展了定位尺度因素(如重建尺度、影像空间分辨率)和像元空间关系等对农业区域多光谱遥感影像亚像元定位模型精度影响的定量分析。以中国吉林省白城地区洮南市和内蒙古自治区兴安盟突泉县交界农业区为研究区域,以典型的空间引力模型为核心模型,以具有相同光谱分辨率的高分一号(GF-1)卫星8、16 m空间分辨率多光谱遥感影像为基础数据,对重建尺度、影像空间分辨率和像元空间关系等因素对遥感亚像元定位精度的影响进行了探讨。结果表明,对于8 m空间分辨率GF-1遥感影像,当重建尺度为5时,在邻接空间关系下的亚像元定位可达到最佳效果,即由40 m空间分辨率遥感影像重建8 m空间分辨率遥感影像的总体精度为74.67%,Kappa系数为0.604;对于16 m空间分辨率GF-1遥感影像,当重建尺度为4时在象限空间关系下的亚像元定位可达到最佳效果,即由64 m空间分辨率重建16 m空间分辨率遥感影像的总体精度为74.65%,Kappa系数为0.623。此外,重建尺度、影像空间分辨率和像元空间关系对亚像元定位精度具有波动影响,3个因素对应的亚像元定位总体精度最大变幅分别为18.08%、4.39%和0.08%,对应Kappa系数变化最大幅度分别为0.268、0.049和0.006。因此,在不同精度影响因素下,基于空间引力模型的GF-1亚像元定位精度影响因素轻重等级依次为重建尺度影像空间分辨率像元空间关系,这可为遥感亚像元定位模型选取、模型参数设置以及适宜的遥感数据选择提供一定参考。  相似文献   
8.
基于Hyperion高光谱影像的冬小麦地上干生物量反演   总被引:3,自引:0,他引:3  
在黄淮海粮食主产区选择河北省衡水市深州市为试验区,以冬小麦地上干生物量为研究对象,以作物冠层高光谱和EO-1 Hyperion高光谱卫星数据为主要数据源,在分析冠层高光谱构建的窄波段植被指数(N-VIs)与实测冬小麦地上干生物量间相关性基础上,提出了利用拟合精度R2极大值区域重心确定冬小麦干生物量敏感的光谱波段中心的方法,并运用该方法确定了冬小麦生物量敏感波段中心。在此基础上,以敏感波段中心筛选结果为指导,利用窄波段植被指数及相关波段开展Hyperion高光谱卫星遥感区域冬小麦干生物量遥感反演和精度验证。最终,按精度最高原则优选区域冬小麦地上生物量反演结果。其中,研究采用了冬小麦孕穗期Hyperion数据,涉及的植被指数包括窄波段归一化植被指数(N-NDVI)、窄波段差值植被指数(N-DVI)和窄波段比值植被指数(N-RVI)。结果表明,通过与实测冬小麦地上干生物量对比,利用冠层高光谱冬小麦地上干生物量反演敏感波段筛选结果及其相应波段构建的Hyperion窄波段植被指数进行孕穗期作物干生物量估算取得了较好结果,其精度由大到小为:NNDVI、N-RVI、N-DVI。其中,以波段B18(波长528.57 nm)、波段B82(波长962.91 nm)构建的Hyperion N-NDVI估算区域冬小麦地上干生物量精度最高,相对误差(RE)和归一化均方根误差(NRMSE)分别为12.65%和13.78%。  相似文献   
9.
针对已有基于遥感信息的收获指数估算对籽粒灌浆过程中作物生物量变化和收获指数变化过程考虑不足且估算精度有待进一步提高的现状,该研究以冬小麦为研究对象,基于冠层高光谱数据、地上生物量和动态籽粒产量等数据,在提出灌浆至成熟阶段动态收获指数(Dynamic Harvest Index, DHI)和构建花后累积地上生物量比例动态参数(Dynamic fG, D-fG)基础上,提出了敏感波段中心构建归一化差值光谱指数(Normalized Difference Spectral Index, NDSI)估算D-fG的作物动态收获指数估测技术方法并进行精度验证。在此基础上,通过敏感波段宽度扩展确定了冬小麦D-fG估算敏感波段最大宽度,并实现了最大波宽下D-fG和DHI的遥感获取。结果表明,筛选的5个敏感波段中心λ(366 nm, 489 nm)、λ(443 nm, 495 nm)、λ(449 nm, 643 nm)、λ(579 nm, 856 nm)、λ(715 nm, 849 nm)构建NDSI进行D-fG遥感估算均达到了较高精度水平,均方根误差(Root Mean Square Error, RMSE)在0.036~0.050之间,归一化均方根误差(Normalized Root Mean Square Error, NRMSE)在10.46%~14.59%之间;基于敏感波段中心的DHI估算中,RMSE在0.039~0.053之间,NRMSE在10.50%~14.28%之间;估算D-fG的5个敏感波段中心最大波段宽度分别为30、68、58、20和86 nm,基于最大波宽获取DHI估算结果中,RMSE在0.054~0.055之间,NRMSE在14.38%~14.65%之间。可见,该研究所提收获指数遥感估算方法具有一定的可行性,为获取冬小麦动态收获指数提供了新思路和新方法,也为窄波段高光谱卫星遥感和宽波段多光谱卫星遥感获取大范围作物收获指数空间信息提供一定技术参考。  相似文献   
10.
冬小麦鲜生物量估算敏感波段中心及波宽优选   总被引:1,自引:2,他引:1  
开展高光谱作物生物量估算敏感波段中心和最优波段宽度筛选对提高作物生物量估算精度具有重要意义。该文以冬小麦为研究对象,利用小麦关键生育期内350~1000 nm 冠层高光谱数据和实测地上鲜生物量,研究任意两波段构建的窄波段归一化植被指数 N-NDVI(narrow band normalized difference vegetation index)与冬小麦地上鲜生物量间的相关关系,构建拟合精度 R2二维图,并以 R2极大值区域重心作为高光谱估算鲜生物量敏感波段中心。通过对敏感波段中心进行波段扩展和相应生物量估算验证,最终确定敏感波段最佳波段宽度。在此基础上,开展基于敏感波段最优波段宽度下冬小麦地上鲜生物量估算和精度验证。结果表明,在 N-NDVI 与冬小麦鲜生物量间拟合 R2≥0.65的二维区域内,确定了401 nm/692 nm、579 nm/698 nm、732 nm/773 nm、725 nm/860 nm、727 nm/977 nm 5个鲜生物量估算的高光谱敏感波段中心;在高光谱估算生物量归一化均方根误差 NRMSE≤10%、相对误差 RE≤10%条件下,上述5个敏感波段中心的最优波段宽度分别为±21 nm、±5 nm、±51 nm、±40 nm 和±23 nm。通过与实测鲜生物量数据对比,利用上述敏感波段中心最优波段宽度进行作物生物量估算,精度在 P<0.01水平上均达到极显著水平,且 RE、NRMSE 分别在8.15%~9.14%、8.69%~9.65%范围内。可见,利用作物冠层高光谱进行冬小麦地上鲜生物量估算时,N-NDVI 与鲜生物量间拟合 R2极大值区域重心的作物高光谱敏感波段筛选和最优波段宽度确定具有一定可行性,为开展作物高光谱数据波段优选提供了新思路,也为多光谱遥感波段设置及遥感数据应用潜力评价提供一定依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号