首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97581篇
  免费   10149篇
  国内免费   6153篇
工业技术   113883篇
  2024年   301篇
  2023年   1523篇
  2022年   2797篇
  2021年   4198篇
  2020年   3176篇
  2019年   2604篇
  2018年   2869篇
  2017年   3182篇
  2016年   2882篇
  2015年   4264篇
  2014年   5187篇
  2013年   6288篇
  2012年   7028篇
  2011年   7309篇
  2010年   7019篇
  2009年   6764篇
  2008年   6557篇
  2007年   5995篇
  2006年   5785篇
  2005年   4644篇
  2004年   3463篇
  2003年   3032篇
  2002年   3170篇
  2001年   2811篇
  2000年   2231篇
  1999年   1879篇
  1998年   1289篇
  1997年   1077篇
  1996年   1008篇
  1995年   770篇
  1994年   657篇
  1993年   493篇
  1992年   428篇
  1991年   279篇
  1990年   232篇
  1989年   184篇
  1988年   129篇
  1987年   78篇
  1986年   70篇
  1985年   49篇
  1984年   27篇
  1983年   25篇
  1982年   32篇
  1981年   22篇
  1980年   23篇
  1979年   11篇
  1976年   5篇
  1973年   4篇
  1959年   8篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 104 毫秒
1.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
2.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
3.
KH550, KH560, CTAB, and F127 were adopted to modify silicon (Si) to improve the dispersity and stability of Si in the polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO) polymer solutions. The influence of surfactants on rheological behaviors of PAN/DMSO/Si blending polymer solutions was investigated by an advanced solution and melt rotation rheometer. The homogeneity and stability were also studied. The results showed that the surfactants could change the viscosity dependence of blending polymer solutions on shear rate, temperature and storage time by increase the steric hindrance of Si. Among the four solutions, PAN/DMSO/Si blending polymer solution with F127 exhibited the lowest viscosity, activation energy and the smallest structural viscosity index and exhibited the trend close to the Newtonian fluids. Moreover, PAN/DMSO/Si blending polymer solution with F127 exhibited the best dispersity and stability, indicating its best physical properties and machinability.  相似文献   
4.
首都体育馆作为北京冬奥会的重要竞赛场馆,在改造过程中深入贯彻"绿色办奥"理念,采用二氧化碳制冰、LED照明、无障碍设施、新风系统、"海绵城市"等可持续性相关措施,为落成已经超过半个世纪的首都体育馆注入了新鲜的"绿色血液".  相似文献   
5.
现阶段,为了探索创新性的发展途径,生态环境监测机构应始终增强风险控制意识。应加强风险管理,立足于风险控制,以求不断健康发展。  相似文献   
6.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
7.
8.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
9.
Jingdezhen is famous for its bluish white (Qingbai) porcelains of the Song Dynasty, and those decorated with iron spots are distinctive among them. Herein, iron spots on a bluish white porcelain were investigated using a series of microscopic and spectroscopic characterizations. We found the decreasing iron content from more than 8 wt% to about 2 wt% during the glaze color transition from rusty to brown and finally into green, which built a connection on the coloring mechanism of iron-rich crystallized glaze and celadon glaze. We identified the rare ε-Fe2O3, a promising magnetic material, in both the dark brown crystals and the triangular crystals in the rusty area, which is its first discovery among bluish white porcelains. Based on these findings, we discussed the coloring mechanism of iron-spot decoration along with the physical form of the iron oxide crystals, indicating the partially reducing atmosphere during firing process.  相似文献   
10.
Zhang  Qi  Wang  Yujing  Zhang  Xueling  Song  Jun  Li  Yinlei  Wu  Xuehong  Yuan  Kunjie 《Journal of Materials Science》2022,57(14):7208-7224
Journal of Materials Science - Form-stable composite phase change materials (C-PCMs) prepared by microencapsulation method and porous matrix adsorption method need for compression molding after...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号