首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77720篇
  免费   5839篇
  国内免费   2720篇
工业技术   86279篇
  2024年   202篇
  2023年   1248篇
  2022年   1745篇
  2021年   2915篇
  2020年   2260篇
  2019年   2039篇
  2018年   2494篇
  2017年   2703篇
  2016年   2311篇
  2015年   2881篇
  2014年   3713篇
  2013年   4811篇
  2012年   4683篇
  2011年   5247篇
  2010年   4555篇
  2009年   4226篇
  2008年   4075篇
  2007年   3894篇
  2006年   3923篇
  2005年   3493篇
  2004年   2339篇
  2003年   2152篇
  2002年   1934篇
  2001年   1692篇
  2000年   1868篇
  1999年   2087篇
  1998年   1795篇
  1997年   1439篇
  1996年   1439篇
  1995年   1215篇
  1994年   979篇
  1993年   755篇
  1992年   579篇
  1991年   449篇
  1990年   352篇
  1989年   279篇
  1988年   241篇
  1987年   152篇
  1986年   116篇
  1985年   136篇
  1984年   114篇
  1983年   81篇
  1982年   86篇
  1981年   94篇
  1980年   77篇
  1979年   59篇
  1978年   45篇
  1977年   42篇
  1976年   52篇
  1975年   39篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
2.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
3.
4.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
5.
6.
Sun  Junli  Wang  Huaibin  Li  Yang  Zhao  Min 《Journal of Porous Materials》2021,28(3):889-894
Journal of Porous Materials - Co3O4 has been widely investigated as a promising candidate anode material for lithium-ion batteries. We report on the porous Co3O4 column synthesized via a simple...  相似文献   
7.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
8.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
9.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
10.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号