首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   90篇
  国内免费   8篇
工业技术   1881篇
  2024年   8篇
  2023年   29篇
  2022年   55篇
  2021年   84篇
  2020年   64篇
  2019年   48篇
  2018年   87篇
  2017年   80篇
  2016年   72篇
  2015年   52篇
  2014年   76篇
  2013年   125篇
  2012年   86篇
  2011年   117篇
  2010年   106篇
  2009年   112篇
  2008年   80篇
  2007年   75篇
  2006年   52篇
  2005年   48篇
  2004年   52篇
  2003年   28篇
  2002年   18篇
  2001年   17篇
  2000年   16篇
  1999年   14篇
  1998年   49篇
  1997年   27篇
  1996年   22篇
  1995年   15篇
  1994年   19篇
  1993年   14篇
  1992年   9篇
  1991年   12篇
  1990年   10篇
  1989年   16篇
  1988年   13篇
  1987年   6篇
  1986年   8篇
  1985年   9篇
  1984年   7篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1977年   6篇
  1976年   6篇
  1975年   3篇
  1973年   3篇
  1970年   2篇
排序方式: 共有1881条查询结果,搜索用时 15 毫秒
1.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
2.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   
3.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
4.
Neural Computing and Applications - The identification of water stress is a major challenge for timely and effective irrigation to ensure global food security and sustainable agriculture. Several...  相似文献   
5.
6.
Single point, sender based control does not scale well for multicast delivery. For applications, such as group video or teleconferencing a low total cost multicast tree is required. In this article we present a destination driven algorithm to minimize the total tree cost of multicast tree in a dynamic situation for the whole session duration. In this heuristic approach we considered the staying duration of participants are available at the time of joining. The performance of our algorithm is analyzed through extensive simulation and evaluated against several other existing dynamic multicast routing and also against one well known near optimum heuristic algorithm used for solving Steiner tree problem. We have further tested our algorithm using erroneous information given by the joining participants. Simulation results show that its performance does not degrade that much even when the range of error is considerably high, which proves the robustness of our algorithm.  相似文献   
7.
A three dimensional, transient model is developed for studying heat transfer, fluid flow and mass transfer for the case of a single-pass laser surface alloying process. The numerical study is performed in a co-ordinate system fixed to the laser which moves with a constant scanning speed. The coupled momentum, energy and species conservation equations are solved using a finite volume technique. Phase change processes are modelled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid-liquid interface. The three-dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. Corresponding experimental results show a good qualitative agreement with the numerical predictions with regard to pool shape and final composition distribution.  相似文献   
8.
9.
A two-dimensional transient fixed-grid enthalpy-based numerical method is developed to analyze the effects of turbulent transport during a binary alloy solidification process. Turbulence effects are introduced through standard k-ε equations, where coefficients are appropriately modified to account for phase-change. Microscopically-consistent estimates are made regarding temperature-solute coupling in a non-equilibrium solidification situation. The model is tested against laboratory experiments performed using an NH4Cl-H2O system in a rectangular cavity cooled and solidified from the top. Particular emphasis is laid on studying the interaction between Rayleigh-Benard type convection and directional solidification in the presence of turbulent transport. Numerical predictions are subsequently compared with experimental results regarding flow patterns, interface growth and evolution of the temperature field, and the agreement is found to be good.  相似文献   
10.
Finite element simulations of the high-temperature behavior of single-phase γ, dual-phase α2+γ, and fully lamellar (FL) α2+γTiAl intermetallic alloy microstructures have been performed. Nonlinear viscous primary creep deformation is modeled in each phase based on published creep data. Models were also developed that incorporate grain boundary and lath boundary sliding in addition to the dislocation creep flow within each phase. Overall strain rates are compared to gain an understanding of the relative influence each of these localized deformation mechanisms has on the creep strength of the microstructures considered. Facet stress enhancement factors were also determined for the transverse grain facets in each model to examine the relative susceptibility to creep damage. The results indicate that a mechanism for unrestricted sliding of γ lath boundaries theorized by Hazzledine and co-workers leads to unrealistically high strain rates. However, the results also suggest that the greater creep strength observed experimentally for the lamellar microstructure is primarily due to inhibited former grain boundary sliding (GBS) in this microstructure compared to relatively unimpeded GBS in the equiaxed microstructures. The serrated nature of the former grain boundaries generally observed for lamellar TiAl alloys is consistent with this finding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号