首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   37篇
  国内免费   8篇
工业技术   552篇
  2023年   13篇
  2022年   19篇
  2021年   54篇
  2020年   27篇
  2019年   27篇
  2018年   34篇
  2017年   41篇
  2016年   34篇
  2015年   12篇
  2014年   26篇
  2013年   34篇
  2012年   28篇
  2011年   31篇
  2010年   9篇
  2009年   23篇
  2008年   15篇
  2007年   11篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   3篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
排序方式: 共有552条查询结果,搜索用时 421 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
3.
4.
A programmable frequency divider with close-to-50% output duty-cycle, with a wide division ratio range, is presented. The proposed divider has also provisions for binary division ratio controls, and has demonstrated operation at frequencies as high as 3.5 GHz. With the above features, the proposed divider can be used in phase-locked loops, and is capable of driving various clocked circuits, which need different clock frequencies. The proposed divider has division ratios from 8 to 510, but it can easily be extended to higher ranges by simply adding more divider stages. The divider circuit has been realised in a 0.18-mum RF CMOS process. Test results show that the output duty-cycle is 50% when the division ratio is an even number. For odd division ratios the worst-case duty-cycle is 44.4% when the division ratio is 9. The output duty-cycle becomes closer to 50% when the division ratio is an increasing odd number. For each division ratio, the output duty-cycle remains constant for different chips, with different input frequencies from gigahertz down to kilohertz ranges, and with different power supply voltages.  相似文献   
5.
HPC industry demands more computing units on FPGAs, to enhance the performance by using task/data parallelism. FPGAs can provide its ultimate performance on certain kernels by customizing the hardware for the applications. However, applications are getting more complex, with multiple kernels and complex data arrangements, generating overhead while scheduling/managing system resources. Due to this reason all classes of multi threaded machines–minicomputer to supercomputer–require to have efficient hardware scheduler and memory manager that improves the effective bandwidth and latency of the DRAM main memory. This architecture could be a very competitive choice for supercomputing systems that meets the demand of parallelism for HPC benchmarks. In this article, we proposed a Programmable Memory System and Scheduler (PMSS), which provides high speed complex data access pattern to the multi threaded architecture. This proposed PMSS system is implemented and tested on a Xilinx ML505 evaluation FPGA board. The performance of the system is compared with a microprocessor based system that has been integrated with the Xilkernel operating system. Results show that the modified PMSS based multi-accelerator system consumes 50% less hardware resources, 32% less on-chip power and achieves approximately a 19x speedup compared to the MicroBlaze based system.  相似文献   
6.
High density of coexisting networks in the Industrial, Scientific and Medical (ISM) band leads to static and self interferences among different communication entities. The inevitability of these interferences demands for interference avoidance schemes to ensure reliability of network operations. This paper proposes a novel Diversified Adaptive Frequency Rolling (DAFR) technique for frequency hopping in Bluetooth piconets. DAFR employs intelligent hopping procedures in order to mitigate self interferences, weeds out the static interferer efficiently and ensures sufficient frequency diversity. We compare the performance of our proposed technique with the widely used existing frequency hopping techniques, namely, Adaptive Frequency Hopping (AFH) and Adaptive Frequency Rolling (AFR). Simulation studies validate the significant improvement in goodput and hopping diversity of our scheme compared to other schemes and demonstrate its potential benefit in real world deployment.  相似文献   
7.
For the 3D printed composites, fiber alignment is affected by the direction of melt-flow during extrusion of filaments and subsequently through the printing nozzle. The resulting fibers orientation and the fiber-matrix compatibility have a direct correlation with mechanical properties. This study investigates the impact of processing conditions on the state of the carbon fiber types and their orientation on the mechanical properties of 3D-printed composites. Short and long carbon fibers were used as starting reinforcing materials, and the state of fibers at the beginning and on the printed parts were evaluated. Strong anisotropy in terms of mechanical properties (flexural and impact properties) was observed for the samples printed with different printing orientations. Interestingly, the number of voids in the printed composites was found to be correlated with the fiber types. The present work provides a step towards the optimization of tailored composite properties by additive manufacturing.  相似文献   
8.
9.
We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, Cs corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature.  相似文献   
10.
Estimation of Defects Based on Defect Decay Model: ED^{3}M   总被引:1,自引:0,他引:1  
An accurate prediction of the number of defects in a software product during system testing contributes not only to the management of the system testing process but also to the estimation of the product's required maintenance. Here, a new approach called ED3M is presented that computes an estimate of the total number of defects in an ongoing testing process. ED3M is based on estimation theory. Unlike many existing approaches the technique presented here does not depend on historical data from previous projects or any assumptions about the requirements and/or testers' productivity. It is a completely automated approach that relies only on the data collected during an ongoing testing process. This is a key advantage of the ED3M approach, as it makes it widely applicable in different testing environments. Here, the ED3M approach has been evaluated using five data sets from large industrial projects and two data sets from the literature. In addition, a performance analysis has been conducted using simulated data sets to explore its behavior using different models for the input data. The results are very promising; they indicate the ED3M approach provides accurate estimates with as fast or better convergence time in comparison to well-known alternative techniques, while only using defect data as the input.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号