首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   1篇
地球科学   31篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2005年   5篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有31条查询结果,搜索用时 78 毫秒
1.
2.
Resistivity in horizontal boreholes can give useful detailed information about the geological conditions for construction in rock, i.e. in front of a tunnel bore machine. This paper is an attempt to identify a suitable methodology for an effective measuring routine for this type of geophysical measurements under actual construction site conditions.Prior to any measurements numerical modelling was done in order to evaluate the resolution of different electrode arrays. Four different arrays were tested; dipole–pole, cross-hole dipole–dipole, cross-hole pole–tripole and multiple gradient array. Additionally the resolution of a combination of cross-hole dipole–dipole and multiple gradient was assessed. The 2D sensitivity patterns for various arrangements of the cross-hole dipole–dipole and multiple gradient array were examined. The sensitivity towards inaccurate borehole geometry and the influence of water in the boreholes were also investigated. Based on the model study the cross-hole dipole–dipole array, multiple gradient array and a combination of these were found to give the best result and therefore were used for test measurements in horizontal boreholes. The boreholes were 28.5 m long and drilled 6.5 m apart. Prototypes of semi-rigid borehole cables made it possible to insert multi electrode cables in an efficient way, allowing fast measurement routines. These measurements were then studied to determine their accuracy and applicability. The results showed a high resistivity rock mass at the site. A transition from high resistivity to slightly lower resistivity coincides well with a change in lithology from gneiss-granite to gneiss. It is likely that the shotcrete on the tunnel wall is seen as a low resistivity zone.The measurements are a valuable tool, but further development of the cables and streamlining of measuring routines have to be performed before the resistivity tomography can be used routinely in pilot holes during construction in rocks.  相似文献   
3.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   
4.
Nepal lies on the southern slope of Himalaya in Asia. In a width ranging between 150 and 250 km, the altitude varies greatly from about 100 m at its southern border to a maximum of 8848 min the northern part. Like the variation in altitude, climatic condition varies quite a lot. Long-term monthly mean erythemal UV daily dose values for Nepal are evaluated using Total Ozone Mapping Spectrometer (TOMS) estimation from the time of its overpass between 1996 and 2003. The results are presented as summer and winter maps of mean UV levels in each satellite grid. The mean winter erythemal UV daily dose ranges between 2.1 and 3.6 kJ m-2 whereas summer values are found to lie between 4.6 and 9.7 kJ m-2. The altitude variation increases the UV levels by about 0.2 kJ km-1 in winter months, and 0.9 kJ km-1 in summer. A multiyear monthly average erythemal daily dose in most of the areas shows that the summer value is about three times higher than that in winter. Although year-to-year variation is not pronounced in high- and mid-elevation regions, UV levels seemed to decrease from 1997 to 2002 in the southern part of the country in the low elevation region by about 5.35%. Due to the combined effects of the altitude, low ozone concentration in the troposphere, and thin air, surface UV radiation at higher altitudes is found to be higher than in the surrounding regions.  相似文献   
5.
The western Barents Sea continental margin, between 74° and 77°N, comprises 7–8 km post-Paleocene sediments. The margin sediments have been divided into four seismic sequences dated by seismic correlation to adjacent areas. This chronostratigraphy shows that the uppermost three sequences are of glacial origin, deposited during the last 2.3 m.y. A huge sedimentary wedge, the Storfjorden Fan, was deposited in front of the Storfjorden Trough between 2.3 and 0.44 Ma, whereas during the last 0.44 m.y. a more evenly distribution pattern is observed. The outbuilding of the fan is related to the onset of the northern hemisphere glaciations causing intense glacial erosion of predominantly consolidated rocks. Seismic facies interpretations indicates that the fan outbuilding was connected to large-scale mass movements. Within the uppermost part of the glacial sequence parallel and continuous reflectors and locally disturbed pattern on the upper slope are associated with downslope change in facies. Volumetric calculations, based on velocity studies and isopach maps, have been used to quantify Cenozoic erosion, sediment yield, sedimentation and erosion rates. Approximately 3300 m of post-Paleocene erosion is calculated within the drainage area of the Storfjorden Fan, of which about 1700 m was eroded in late Pliocene-Pleistocene times giving an average denudation rate of 0.63 mm/yr.  相似文献   
6.
This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20°S to 60°N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10° latitude-by-20° longitude boxes) is <20 W m−2 in the interior ocean and <100 W m−2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m−2 over the interior ocean and <25 W m−2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone.  相似文献   
7.
A regional correlation of Neogene stratigraphy has been attempted along and across the NW European Atlantic continental margin, between Mid-Norway and SW Ireland. Two unconformity-bounded successions are recognised. These are referred to as the lower and upper Neogene successions, and have been dated as Miocene–early Pliocene and early Pliocene–Holocene, respectively, in age. Their development is interpreted to reflect plate-wide, tectonically driven changes in the sedimentary, oceanographic and latterly climatic evolution of the NE Atlantic region. The lower Neogene succession mainly preserves a record of deep-water sedimentation that indicates an expansion of contourite sediment drifts above submarine unconformities, within this succession, on both sides of the eastern Greenland–Scotland Ridge from the mid-Miocene. This is interpreted to record enhanced deep-water exchange through the Faroe Conduit (deepest part of the Southern Gateway), and can be linked to compressive inversion of the Wyville–Thomson Ridge Complex. Thus, a pervasive, interconnected Arctic–North Atlantic deep-water circulation system is a Neogene phenomenon. The upper Neogene succession records a regional change, at about 4 Ma, in the patterns of contourite sedimentation (submarine erosion, new depocentres) coeval with the onset of rapid seaward-progradation of the continental margin by up to 100 km. This build-out of the shelf and slope is inferred to record a marked increase in sediment supply in response to uplift and tilting of the continental margin. Associated changes in deep-water circulation may be part of an Atlantic-wide reorganisation of ocean bottom currents. Glacial sediments form a major component of the prograding shelf margin (shelf-slope) sediment wedges, but stratigraphic data indicate that the onset of progradation pre-dates significant high-latitude glaciation by at least 1 Ma, and expansive Northern Hemisphere glaciation by at least 3 Ma.  相似文献   
8.
Based on studies of sediment accumulations deposited from-and erode by-alongslope flowing ocean currents on the European continental margin from Porcupine (Ireland) to Lofoten (Norway), the evolution of the Cenozoic paleocirculation was reconstructed as part of the STRATAGEM project. There is evidence of ocean current-controlled erosion and deposition in the Rockall Trough, in the Faeroe-Shetland Channel and on the Vøring Plateau since the late Eocene, although the circulation pattern remains ambiguous. The late Palaeogene flow in the Rockall Trough was almost probably driven by southerly-derived Tethyan Outflow Water. The extent and strength of any northerly-derived flow is uncertain. From the early Neogene (early-mid-Miocene), there was a massive regional expansion of contourite drift development both in the North Atlantic and in the Norwegian-Greenland Sea. This was most probably related to the development of the Faroe Conduit, the opening of the Fram Strait and the general subsidence of the Greenland-Scotland Ridge. These may have combined to cause a considerable acceleration in the exchange and overflow of deep waters between the Arctic and Atlantic Oceans. An early late Neogene (late early Pliocene) regional erosional event has been ascribed to a vigorous pulse of bottom-current activity, most probably the result of a global reorganisation of ocean currents associated with the closure of the Central American Seaway. During the late Neogene, contourites and sediment drifts developed in deep-water basins, between units of glacigenic sediments as well as infill of several paleo-slide scars. These sediments were derived from areas of bottom-current erosion as well as from the development of Plio-Pleistocene prograding sediment wedges, incorporating the extensive sediment supply derived from shelf-wide ice sheets. Presently a profound winnowing prevails along the shelf and upper slope due to the inflowing currents of Atlantic water. Depocentres of sediments derived from the winnowing are located (locally) in lower slope embayments and in slide scars.  相似文献   
9.
Throughout the last 1.1 million years repeated glaciations have modified the southern Fennoscandian landscape and the neighbouring continental shelf into their present form. The glacigenic erosion products derived from the Fennoscandian landmasses were transported to the northern North Sea and the SE Nordic Seas continental margin. The prominent sub‐marine Norwegian Channel trough, along the south coast of Norway, was the main transport route for the erosion products between 1.1 and 0.0 Ma. Most of these erosion products were deposited in the North Sea Fan, which reaches a maximum thickness of 1500 m and has nearly 40 000 km3 of sediments. About 90% of the North Sea Fan sediments have been deposited during the last 500 000 years, in a time period when fast‐moving ice streams occupied the Norwegian Channel during each glacial stage. Back‐stripping the sediment volumes in the northern North Sea and SE Nordic Seas sink areas, including the North Sea Fan, to their assumed Fennoscandian source area gives an average vertical erosion of 164 m for the 1.1–0.0 Ma time period. The average 1.1–0.0 Ma erosion rate in the Fennoscandian source area is estimated to be 0.15 mm a?1. We suggest, however, that large variations in erosion rates have existed through time and that the most intense Fennoscandian landscape denudation occurred during the time period of repeated shelf edge ice advances, namely from Marine Isotope Stage 12 (c. 0.5 Ma) onwards.  相似文献   
10.
The transition from Rotliegend to Zechstein within the Southern Permian Basin is one from continental desert to a marine environment. During the Upper Rotliegend II a huge playa lake existed there. This lake was temporarily influenced by precursors of the Zechstein transgression. Therefore the mega-playa evolved into a sabkha system. One of these early marine ingressions is known from an outcrop in Schleswig-Holstein. Laminated silt- and claystones, deposited within a standing water body, are intercalated in siltstones of a salt-flat environment. The lake sediments are characterised by high frequency cyclicity, shown by the sedimentary record and also by palaeontological data. The section contains fresh water as well as brackish-marine and marine fauna. Climatically forced cycles interact with marine incursions. After the Zechstein transgression had flooded the basin completely, sedimentation was controlled by sea-level fluctuations. Two sections, in the southern North Sea and in Schleswig-Holstein, are presented in this paper. Cyclicities with different frequencies controlled the sedimentation of the Kupferschiefer (T1) and the Werra Carbonate (Ca1). Sediments of the North Sea sequence were deposited within a shallow bay at the margin of an elevation. Therefore, the high frequency cyclicity became obvious within the sedimentary patterns and in the faunal content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号