首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   223篇
  国内免费   280篇
地球科学   2239篇
  2024年   2篇
  2023年   17篇
  2022年   22篇
  2021年   36篇
  2020年   35篇
  2019年   69篇
  2018年   43篇
  2017年   39篇
  2016年   38篇
  2015年   54篇
  2014年   56篇
  2013年   151篇
  2012年   85篇
  2011年   50篇
  2010年   36篇
  2009年   92篇
  2008年   119篇
  2007年   99篇
  2006年   109篇
  2005年   90篇
  2004年   126篇
  2003年   84篇
  2002年   90篇
  2001年   69篇
  2000年   65篇
  1999年   67篇
  1998年   77篇
  1997年   75篇
  1996年   60篇
  1995年   64篇
  1994年   54篇
  1993年   31篇
  1992年   25篇
  1991年   15篇
  1990年   25篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有2239条查询结果,搜索用时 15 毫秒
41.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   
42.
介绍了2013~2014中国大陆构造环境监测网络的基本情况及西部地区绝对重力观测的情况,并对观测结果进行分析。结果表明,成果稳定性良好,89.5%的成果观测精度优于±5.00μGal,能够满足"陆态网络"的技术要求。  相似文献   
43.
Instability structures, synsedimentary faults and turbidites have been studied in the Lower Pliensbachian succession of Saint-Michel-en-Beaumont, belonging to the Taillefer block, an ancient half-graben emplaced during the Liassic Tethyan rifting. Geometrical and mechanical analyses demonstrate that the instability structures occurred thanks to movements along spineless synsedimentary normal faults, when the turbiditic and limestone layers were already case-hardened and partly fractured by tension gashes even when the mudstones were still unlithified. Both the tension gashes and the synsedimentary faults are homogeneous in strike with the major regional faults and are in good agreement with the regional direction of extension for this period. The characters of the turbiditic beds, with erosive base, graded bedding, and incomplete Bouma sequence, are in favour of a seismic origin. Instability structures, spineless synsedimentary faults and turbiditic inflows are thus considered as seismites and interpreted as the result of high seismicity periods including some events with M > 5 in the general extensive ambiance of the Liassic Tethyan rifting. The analysis of the geometrical relationships between all these sedimentary features allows to distinguish the successive stage of occurrence of an instability structure, from the sedimentation of alternating marls and limestones, and sudden turbiditic inflows, then early case-hardening of the turbidites, until the important seismotectonic event generating the spineless normal faults, themselves triggering the fall of indurated blocks and locally the forming of breccias. The Ornon Fault, which constitutes the border of the Taillefer block, 15 km eastward, played a major role during the Liassic sedimentation and may represent the major seismic fault related to the seismites occurrence in the Beaumont basin.  相似文献   
44.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   
45.
TThe Roper Group is a cyclic, predominantly marine, siliciclastic succession of Calymmian (Early Mesoproterozoic) age. It has a distribution of at least 145 000 km2 and a maximum known thickness of ~5000 m. In the Roper River district the middle part of the Roper Group (~1300 m thick) is characterised by the cyclical alternation of mudstone and sandstone units, and can be divided into six third‐order depositional sequences. A typical sequence is broadly progradational in aspect, and comprises a lower, mudstone‐rich, storm‐dominated shelf succession (up to 330 m thick), and a sequence‐capping unit dominated by tidal‐platform cross‐bedded sandstone (up to 80 m thick); both are interpreted as highstand systems tracts. Transgressive strata are poorly represented but where present are characterised by paralic to fluvial redbed assemblages that include ooidal ironstone. Roper Group sequences lack a distinct condensed section and sequence boundaries are mostly conformable. Erosional contacts separate mud‐rich shelf facies from sequence‐capping sandstones. We infer that these erosion surfaces were generated by episodic flexural tectonism, which also generated the accommodation and sediment supply for Roper sequences.  相似文献   
46.
The evolution of the Australian plate can be interpreted in a plate‐tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent‐continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly supra‐subduction environment. Widespread plume‐driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea).  相似文献   
47.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   
48.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   
49.
墨西哥湾南部晚侏罗纪主力烃源岩的形成条件   总被引:3,自引:0,他引:3  
通过对墨西哥湾不同时代可采储量的分布特征和油源对比资料的分析认为,晚侏罗纪烃源岩是墨西哥湾南部最主要的烃源岩。资料显示,晚侏罗纪优质烃源岩形成的主控因素是稳定的构造和沉积条件以及超咸的还原环境,其中,"世界顶级"的晚侏罗纪提塘阶烃源岩主要形成于超咸的碳酸盐岩和/或蒸发岩沉积环境,属半深海还原环境,有机质以藻类为主,推测烃源岩中的有机质可能与极端干旱气候条件下的藻类勃发有关。  相似文献   
50.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号