首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   223篇
  国内免费   280篇
地球科学   2239篇
  2024年   2篇
  2023年   17篇
  2022年   22篇
  2021年   36篇
  2020年   35篇
  2019年   69篇
  2018年   43篇
  2017年   39篇
  2016年   38篇
  2015年   54篇
  2014年   56篇
  2013年   151篇
  2012年   85篇
  2011年   50篇
  2010年   36篇
  2009年   92篇
  2008年   119篇
  2007年   99篇
  2006年   109篇
  2005年   90篇
  2004年   126篇
  2003年   84篇
  2002年   90篇
  2001年   69篇
  2000年   65篇
  1999年   67篇
  1998年   77篇
  1997年   75篇
  1996年   60篇
  1995年   64篇
  1994年   54篇
  1993年   31篇
  1992年   25篇
  1991年   15篇
  1990年   25篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有2239条查询结果,搜索用时 15 毫秒
31.
The Chos Malal fold and thrust belt (FTB) is a thick-skinned mountain belt formed by Mesozoic deposits of the Neuquén Basin during the Andean orogeny. Four structural cross-sections in the entire deformed area, supported by field and subsurface data, suggest a strong link between thick and thin-skinned structures. Major Andean thrusts branching from a detachment placed 12 km into the crust created large basement wedges, which were inserted in the cover producing minor order structures. The westernmost of these wedges is exposed forming the Cordillera del Viento, while others basement slices at depth were interpreted from seismic lines. These thick-skinned structures transferred deformation to the cover along the Auquilco Formation and contributed to create all thin-skinned structures surveyed in the Chos Malal FTB. We recognized half-graben geometries in the seismic lines, preserving their extensional configuration, which suggests that the main normal faults were not inverted. Shortenings calculated from the restoration of the four cross-sections are 16.9 km (29.7%), 16.9 km (29.7%), 14.7 km (26.9%) and 14.15 km (26.3%), which evidence a slight diminution of the contraction toward the south probably associated with the plunge of the Cordillera del Viento structure in this segment of the Chos Malal FTB.  相似文献   
32.
东海陆架边缘的构造特征记录了有关冲绳海槽张裂过程的关键信息,对于进一步理解海槽的形成演化以及弧后张裂与弧-陆碰撞之间的相互作用至关重要。本文基于多道地震和重磁资料,分析了东海陆架边缘的地形和构造特征,并对冲绳海槽早期张裂过程、北西向断裂带的分隔控制作用、钓鱼岛隆起带南北构造差异和冲绳海槽的向西前展等问题进行了探讨。结果表明,冲绳海槽西侧陆坡存在的分段性,各分段在地形地貌、地层展布和构造特征等方面的不同,体现了其构造演化和现今构造活动性的差异。冲绳海槽中—北段的张裂始于陆架前缘坳陷,在晚中新世向东扩展至整个海槽,晚中新世至今以分散式张裂为主。北西向断裂带对东海陆架边缘不同分段的构造特征和构造活动起到了分隔控制和转换协调作用,控制了不同类型陆坡的形成和发育。受冲绳海槽在全宽度上向西前展的影响,钓鱼岛隆起带南段的基底隆起及其支撑的陆架边缘发生了破坏和沉降,形成基底起伏较大、地形崎岖不平的陆坡。  相似文献   
33.
开合构造是一种全球构造假说,该假说基础为地球上的一切物质和地质体都存在开合表现;可以用开合构造观解释一些板块构造理论登陆后不能合理解释的地质现象。文章在结合前人基础地质资料基础上,分析藏南地区基本的构造单元划分;强调动态构造单元划分,提出了被重力拆离断层改造叠加的逆断层区以及被拆离断层改造的正断层区。在主流观点提出碰撞挤压造山形成青藏高原时,野外科学考察发现了绒布寺伸展正断层的存在。文章认为绒布寺伸展正断层与主中央逆冲断层形成时间比藏南拆离系要早,两者构成了藏南挤出构造的两个边界;而藏南拆离系是晚期形成的,局部叠加在主中央逆冲断层之上,并且珠峰北追踪了早期绒布寺正断层呈相对高角度产出。3条断裂构造系统是不同时期、不同构造背景下的产物。藏南由前人所划分的飞来峰、构造窗等逆冲推覆构造系统中的构造单元,往往挤压逆冲特征表现不明显,却表现出由新的地层覆盖在老地层之上而显示地层柱缺失的特征。文章认为这些是滑覆构造的表现,是藏南地区晚期重力滑覆作用的产物。用开合构造理论将该地区新生代构造演化划分为由开转换为合;然后由合转换为开,构成一个完整开合演化历史,在这多阶段构造演化过程中,地球深部的热能、地球内部的重力势能以及构造引起的附加应力能起到关键作用。  相似文献   
34.
Tectonic processes are widely considered as a mechanism causing carbonate platform margin instabilities leading to the emplacement of mass transport deposits and calciturbidites. However, only few examples establishing a clear link between tectonics and re-sedimentation processes are known from the literature. The two-dimensional and three-dimensional wire-cut walls of hundreds of quarries extracting ornamental limestones (for example, Perlato di Sicilia) from the Western Sicily Cretaceous Escarpment in Italy expose a series of mass transport deposits. The depositional architecture, spatial facies distribution and sedimentary features of these deposits were studied in detail. Thin section analysis was used to define the microfacies characteristics and to determine the age of the re-sedimented limestones. Eleven facies types grouped into four facies associations were recognized that defined specific depositional processes and environments. The stratigraphic architecture of the slope was reconstructed using four composite facies successions based on the detailed analysis and correlation of the field sections. The palaeoslope orientation was reconstructed based on the analysis of synsedimentary faults, slump scars and pinch-out geometries. The Western Sicily Cretaceous Escarpment was strongly influenced by synsedimentary transtensional tectonics in combination with magmatic processes, as suggested by the presence of tuffites and pillow lava intercalations within the re-sedimented carbonate series. These volcanics point to a major role of crustal shear as a trigger for mass transport deposit emplacement. The facies distribution along the Western Sicily Cretaceous Escarpment delivers new insights into the deformation processes accompanying the crustal extension of the Cretaceous western Tethys realm.  相似文献   
35.
中国海域及邻区是建设“21世纪海上丝绸之路”、打造海洋命运共同体和推动可持续发展的关键地区,也是地球科学最具有典型性和代表性的研究区域之一。中国管辖海域1:100万区域地质调查是一项以国家需求为导向、以解决重大地球系统科学问题为目标的基础性公益性工作。中国地质调查局通过近20年的持续调查,实现了对中国管辖海域1:100万区域地质调查的全面覆盖,系统地获取了海洋地质和地球物理基础数据,形成了基于实测数据的“一图一库一报告”,大幅提升了中国海洋地质调查工作程度。这项工作填补了中国小比例尺海洋地质国情调查的空白,初步摸清了中国管辖海域地质环境条件和资源环境潜力,取得了一批原创性的认识,为建设海洋强国提供了详实可靠的地质资料,为提升区域地质科学的认知水平奠定了坚实基础。  相似文献   
36.
The evolution of the Australian plate can be interpreted in a plate‐tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent‐continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly supra‐subduction environment. Widespread plume‐driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea).  相似文献   
37.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   
38.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   
39.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   
40.
Seismic reflection data indicate the Moroccan salt basin extends to the Cap Boujdour area in the Aaiun Basin. Two salt diapir structures have been identified and several areas of collapsed strata indicate probable salt removal at the shelf edge. The presence of salt in this area correlates to the conjugate southern George's Bank Basin and the Baltimore Canyon area, and it is suggested that the salt extends southward from the known salt diapir province in the George's Bank Basin southward to the Great Stone Dome. The paucity of salt diapirs is attributed to the thick carbonate and anhydrite sequence, which was deposited soon after salt deposition that inhibited halokinesis. The presence of salt along this large segment of the Atlantic margin should increase its hydrocarbon potential with traps created around salt diapirs and provision of migration pathways from deep potential source rocks in the early Cretaceous and Jurassic strata to shallower levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号