首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   11篇
  国内免费   15篇
环境安全   51篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有51条查询结果,搜索用时 734 毫秒
21.
应用基于系统辨识理论的实时迭代模式(real-time iterative model,RTIM)对WRF模式预报结果进行后处理,建立了上海地区霾天气的模式输出-统计(model output statistics,MOS)方法.首先,根据WRF模式的气象输出资料,结合大气污染观测数据,筛选出霾事件的预报因子;其次,运用系统辨识实时迭代模型,建立依据MOS预报方法的PM2.5、PM10和能见度预报模式;最后根据霾事件的判别标准,对上海2012年11月—2013年1月的霾日进行24 h和48 h预报.结果表明,PM2.5模式预报成功率为75.0%~63.9%,PM10模式预报成功率为87.5%~81.8%,能见度模式预报成功率为71.0%~74.2%,霾日预报成功率为73.7%~72.7%.分析表明,研究期间上海的气溶胶以细颗粒物为主,低能见度主要由导致霾现象的PM2.5引起.该方法能较准确地预报霾日的发生,可为我国城市大气环境业务预报提供参考依据.  相似文献   
22.
为了解钢铁企业的大气污染特征,使用在线监测仪器于2016年7月对某典型钢铁企业VOCs(挥发性有机化合物)、PM2.5和NMHC(非甲烷烃)等污染物进行观测,同时基于FAC(气溶胶生成系数)估算了该区域的SOA(二次有机气溶胶)生成潜势.结果表明:观测期间ρ(总VOCs)为(106.08±63.81)μg/m3,与ρ(NMHC)(以C计)的相关系数(R2)达到了0.8(P < 0.05)以上;VOCs中主要类别为烷烃和芳烃;ρ(O3)超标期间的ρ(苯)和ρ(甲苯)分别比ρ(O3)未超标时间段高47.0%和37.2%,并且高ρ(总VOCs)期间芳烃占比高达46.0%,这可能与钢铁企业在炼焦时苯系物(苯、甲苯和二甲苯)排放有关.ρ(总VOCs)、ρ(NMHC)、ρ(烷烃)、ρ(芳烃)和ρ(乙炔)均呈早晚高峰值的日变化特征,而ρ(烯烃)由于异戊二烯受天然源排放影响,呈午间单峰值的特征.观测期间的SOA生成潜势为2.54 μg/m3,较城区高出76.4%,显示钢铁企业SOA对PM2.5具有一定贡献;其中芳烃对SOA生成贡献高达97.2%,主要贡献组分包括苯、间/对-二甲苯、乙苯、苯、邻-二甲苯.研究显示,钢铁企业VOCs污染治理应重点控制苯系物,同时烷烃的排放也不容忽视.   相似文献   
23.
利用差分光学吸收光谱技术,对北京市北郊的大气氨进行了近2个月的观测.结果显示,在秋冬季节,北京大气氨的浓度为(12.89±10.12)×10-9(part per billion),观测期间的小时浓度最大值为49.71×10-9.氨浓度的日变化呈现出白天低、夜晚高的特征,在早高峰时间,氨有明显的一个峰值浓度.另外,氨与NO2、CO、PM2.5和PM10之间相关性分别为0.845、0.824、0.821和0.598,明显高于春季,说明秋冬季北京大气氨受机动车排放影响明显.气象要素对氨 浓度明显影响,风速、气压和相对湿度与氨的关联性较高,相比而言,氨与气温关联性较低,说明秋冬季低温环境下,土壤排放、垃圾存储堆场和人体排泄物等排放对大气氨浓度影响较小.  相似文献   
24.
目前在使用光离子化气体检测器(PID)设备对工业园区挥发性有机物(VOCs)进行监测过程中,设备间监测数据普遍存在偏差大、准确度和稳定性不足等问题,影响了园区VOCs的监测评价与管控.为探究偏差产生的原因,本文选取了市售4个品牌的8套PID监测设备,在工业园区进行实地测试,对其适用性进行研究.结果表明:(1)在安装了除湿装置后,PID设备在高湿阶段监测正常,同时通过在现场对不同湿度标准气体的测试可知,除湿装置对测试数据的准确性无影响.因此,在高湿度地区采用除湿装置,可提高PID设备监测数据的准确性.(2)环境空气实测时,虽然与气相色谱仪/氢火焰离子化检测器(GC-FID)设备原理不同,但经过一系列改进措施后,8台PID设备测得总VOCs体积分数变化趋势与GC-FID设备基本一致;同时,同品牌设备间平行性较好,各PID设备与GC-FID设备所测结果的相关系数均在0.82以上,最高可达0.96,但在GC-FID设备监测的VOCs体积分数<50×10-9时,二者相关性不理想.(3)针对工业园区VOCs监测,本研究提出了将PID设备和GC-FID设备监测数据的比对计...  相似文献   
25.
环境空气中挥发性有机物(VOCs)的在线监测技术近年来受到普遍关注。相对于传统的离线手工监测,在线监测能够解决监测数据时空代表性不足的问题,同时更好地满足环境质量连续监测和研究的需要。现有环境空气常规气体在线监测技术规范对量值溯源有较高的要求,其中标准气体的溯源和比对是质量控制和质量保证的根本。通过构建上海市环境空气VOCs在线监测的标准气体实验室比对测试流程,提出了标准气体比对结果的评价指标及方法,以确保在线监测数据的准确性和可比性。结果显示,6瓶臭氧前体混合物标准气体中,90%以上物种的测定结果的相对偏差在±10%以内,个别物种超出范围,说明定期开展标准气体比对对于VOCs在线监测的质控和质保具有重要意义。  相似文献   
26.
黑碳(black carbon,BC)作为大气气溶胶的重要组成部分,因其粒径小、比表面积大和辐射强迫等,对区域和全球辐射平衡、气候和人体健康产生巨大影响.以高度城市化的上海市为研究区域,基于MERRA-2再分析数据资料和地面观测数据,利用M-K趋势检验、后向轨迹和潜在源贡献函数(potential source contribution function,PSCF)探究了上海市1980~2019年大气BC浓度的时空变化特征及局地排放和区域传输的影响.结果表明:①MERRA-2大气BC浓度和地面观测数据具有较好的趋势一致性(R∈[0.68,0.72]),表明MERRA-2再分析资料可以用来有效揭示地面大气BC浓度的长期变化.②上海近40年大气BC浓度可分为3个阶段:缓慢增长的"低值"阶段[1980~1986年,(1.75±0.17)μg·m-3],相对稳定的"中值"阶段[1987~1999年,(2.18±0.07)μg·m-3]和波动变化的"高值"阶段[2000~2019年,(3.07±0.31)μg·m-3];就季节变化而言,上海BC浓度总体呈夏季浓度低,冬季浓度高的"U"型模式;受水运货运船舶柴油机等发动机黑碳排放的影响,7月出现BC浓度小高峰.③大气污染物诊断质量比及双变量相关分析[R(BC-NO2) > R(BC-CO) > R(BC-SO2)]表明,交通排放是上海大气BC的主要排放源,尤其是重型柴油车的影响.④后向轨迹和PSCF分析发现上海夏季气团以清洁海风为主导,占77.18%;其他季节来自北方的气团超过50%.上海大气BC潜在源区主要分布在中国东部地区,以长三角为中心向外扩张,且扩张方向与后向轨迹方向一致.  相似文献   
27.
28.
使用WRF Chem模式模拟分析2014年4月16日—18日一次上海市大气污染过程,探究交通减排对该市PM2.5浓度的影响。结果表明,模式较为成功地再现了污染过程中天气形势及大气污染物时空变化, PM2.5浓度模拟与观测结果IOA达到065。研究时段内交通减排使上海市PM2.5质量浓度平均减少 329 μg/m3,虹口凉城监测站受到交通减排影响最大,对小时平均质量浓度的最大影响超过26 μg/m3,超过此站PM2.5浓度的13%;PM2.5浓度越高,交通减排对上海市PM2.5浓度的影响越显著;交通减排对上海北部地区空气质量的改善效果最明显。  相似文献   
29.
采用光散射颗粒物监测仪,通过对其采样系统、自动除湿装置、自动校准装置进行研发设计和改造,建成了一套应用于建筑工地扬尘的颗粒物在线监测仪。通过光散射法与标准重量法的比对试验,分析了该仪器的技术指标。结果表明,其平行性≤±7%,平均相对误差≤±20%,最大相对误差≤±25%,相关系数≥0.8。通过点位位置、点位高度、除湿等试验及1年的试点应用,确定仪器的量程、时间分辨率、除湿方式、校准方式等关键性能指标,并研究制定和发布了《上海市建筑施工颗粒物和噪声在线监测技术规范(试行)》。最后总结了上海市建筑工地扬尘在线监测系统在预警、监管和执法中的应用成果。  相似文献   
30.
采用某品牌3台传感器,对环境空气中气态污染物(NO_2、SO_2、O_3、CO)和颗粒物(PM_(10)、PM_(2.5))进行为期1个月的连续监测,探讨传感技术在环境空气监测中的方法适用性。研究表明,3台传感器监测的各污染物质量浓度均显著相关,Pearson相关系数0.9(p0.01);监测的颗粒物与国控点数据显著相关且质量浓度水平接近,Pearson相关系数0.9(p0.01);PM_(2.5)传感器测定值相对于国控点数据的平均相对误差仅为-7.3%,均值绝对误差2μg/m~3;传感器在高湿度下的PM_(2.5)测定值与国控点数据相吻合,当相对湿度为80%~90%时,平均相对误差仅为-0.9%;传感器气态污染物测定值与国控点数据之间存在差异,电化学原理气态污染物传感器性能仍有待提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号