首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   135篇
  国内免费   145篇
农业科学   11篇
地球科学   728篇
航空航天   1篇
生物科学   96篇
文化教育   6篇
环境安全   26篇
自然科学   99篇
历史地理   4篇
工业技术   48篇
数理化   10篇
医药卫生   49篇
  2024年   2篇
  2023年   18篇
  2022年   37篇
  2021年   44篇
  2020年   29篇
  2019年   39篇
  2018年   25篇
  2017年   25篇
  2016年   25篇
  2015年   33篇
  2014年   33篇
  2013年   48篇
  2012年   34篇
  2011年   41篇
  2010年   41篇
  2009年   42篇
  2008年   47篇
  2007年   45篇
  2006年   43篇
  2005年   41篇
  2004年   38篇
  2003年   37篇
  2002年   39篇
  2001年   38篇
  2000年   33篇
  1999年   31篇
  1998年   39篇
  1997年   39篇
  1996年   17篇
  1995年   14篇
  1994年   11篇
  1993年   13篇
  1992年   9篇
  1991年   13篇
  1990年   2篇
  1989年   9篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有1078条查询结果,搜索用时 31 毫秒
21.
This paper presents a set of bulk geochemical and mineralogical data from a paleoweathering profile located in Zunyi District, Northern Guizhou, China. It was formed at the top of the Hanjiadian Formation of the Lower Silurian. A truncated, argillic, gleyed, kryptic paleospodosol is recognized in the paleoweathering profile. Ratios of immobile elements (Ti/Zr, Ti/Al) and their binary (e.g., Nb vs. Zr/TiO2 and Th/Sc vs. Zr/Sc), triangular diagrams (La-Th-Sc, Th-Sc-Zr/10, Zr-Cr-Ga) reflect that the Gaojiayan paleosol is the product of in-situ weathering of gray-green silty mudstone of the underlying Hanjiadian Formation. Mass balance calculations indicate K enrichment and Na enrichment in the upper and lower portions of paleosol, respectively. These findings both are the results of transgression, which brings substantial concentrations of such elements as K, Na, and Sr. In particular, K enrichment is achieved by the illitization of kaolinite. The biological processes of terrestrial vascular plants also enhance K concentration, especially at the top of the paleosol. Na enrichment is a consequence of albitization and/or adsorption by clay minerals through cation exchange. The mass distributions and relative mass changes of rare earth elements (REEs) in the studied profile display characteristics of vertical zonation. Three peaks in total REEs content are observed, indicating two paleoclimatic or paleoenvironmental changes. Mineralogical characteristics indicate that the paleoclimate changed first from warm and humid to cold and dry and later, to dry and lightly warmer. The corresponding soil environment varies from weakly acidic to strongly alkaline and later, to weakly acidic. Mass translocation characteristics of REEs and several transition metals suggest that the Gaojiayan paleosol may have undergone top erosion.  相似文献   
22.
风尘石英在物源示踪和古气候研究中的应用   总被引:1,自引:0,他引:1  
朱潇  蒋富清 《海洋科学》2018,42(4):141-152
系统总结了近几十年来应用风尘石英的物理和化学特性(如粒度、形貌特征、电子自旋共振(ESR)信号强度、结晶度指数(CI)、含量和通量,以及δ~(18)O等)进行物源和古气候示踪等方面的研究进展,并分析了其中存在的问题。结果表明石英的这些指标具有稳定性,可以指示物源和古气候变化,对目前研究提出的问题和建议也对今后用风尘石英指示古气候变化的研究有重要的借鉴意义。  相似文献   
23.
The Holocene paleoclimate of the Caucasus region is rather complex and not yet well understood: while existing studies are mainly based on pollen records from high-altitude and humid lowland regions, no records are available from the semi-humid to semi-arid south-eastern Caucasian lowlands. Therefore, this study investigated compound-specific δ2H and δ13C isotopes of leaf wax biomarkers from Holocene floodplain soils in eastern Georgia. Our results show that the leaf wax δ2H signal from the paleosols mostly reflects changes in the moisture source and its isotopic composition. Depleted δ2H values before ~8 cal ka bp change towards enriched values after ~5 cal ka bp and become again depleted after ~1.6 cal ka bp. This trend could be caused by Holocene changes of the isotopic compositions of the Black and eastern Mediterranean Sea, and/or by varying contribution of both moisture sources linked with the North Atlantic Oscillation. The leaf wax δ13C signal from the paleosols directly indicates varying local water availability and drought stress. Depleted δ13C values before ~8 and after ~5 cal ka bp indicate wetter local conditions with higher water availability, whereas more enriched values during the middle Holocene (~8 until at least 5 cal ka bp ) indicate drier conditions with increased drought stress.  相似文献   
24.
二叠纪- 三叠纪之交发生了地史上最大规模的生物灭绝事件,该事件可能与当时气候环境的强烈变化有关。前人对该时期较连续的海相地层揭示的古气候研究较为成熟,而对同时期陆相地层的研究缺乏系统性,研究资料需要进一步完善。本文选取豫西宜阳地区上二叠统孙家沟组为研究对象,运用沉积学、矿物学与元素地球化学等方法对该时期的古气候进行恢复,并与同时期陆相地层对比,进而讨论气候变化对该时期生物灭绝的影响。结果表明:①宜阳地区孙家沟组经历了滨湖- 浅湖- 滨湖等亚相的演化过程,其地层中岩相变化、古生物化石缺失、大量的钙质结核及其它沉积构造的出现揭示了孙家沟组的上段气候明显比下段炎热干旱。②元素地球化学指标以及粘土矿物组合的垂向变化等指示了该时期的气候经历了温湿向炎热半干旱- 干旱转变。③宜阳地区孙家沟组的气候指标所得出的结论与其他地区同时期陆相地层古气候的变化基本一致,反映了研究区与同时期全球古气候的变化存在一致性。二叠纪末期温度的骤升、气候极度干旱化以及陆表生态系统遭受毁灭性破坏等因素,可能是导致或加速陆地生物灭绝的主要原因之一。本次研究对该时期气候变化与生物灭绝之间的关系具有一定的指导意义,为探讨全球P- T之交生物灭绝的原因提供新的证据。  相似文献   
25.
We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ13C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ13C versus time and the δ13C versus carbon emission curves.  相似文献   
26.
Contemporary precipitation patterns in the Caribbean region are spatially variable, and the small number of Holocene paleoclimatic records may not adequately capture patterns of variation in the past. The hydrological history of Grenada was inferred from paleolimnological analyses of sediment cores from two crater lakes on the island. The basins were formed by volcanic activity some time during the Last Termination, but were dry between ca. 13 000 and ca. 7200 cal. a BP. After filling, the lakes were initially very shallow, and sedimentation was interrupted by a hiatus ca. 6300–5500 cal. a BP, followed by deposition of a thick tephra in both sites. After 5500 cal. a BP, lake level shows considerable multi‐centennial variability, superimposed upon a long‐term trend of generally higher lake level after 3200 cal. a BP. The pattern of lake‐level variation in Grenada shows some similarity with other Caribbean paleoclimatic records in terms of the timing of transitions, but differs from several classic studies in the sign of inferred precipitation change. The differences among records may reflect spatially variable precipitation patterns in the past in response to the position of the Intertropical Convergence Zone and to sea surface temperature influences on the trade winds and Caribbean low‐level jet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
A climatic basis for microrefugia: the influence of terrain on climate   总被引:1,自引:0,他引:1  
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.  相似文献   
28.
粘土矿物组合反映了源区气候冷、暖周期性变化,记录了沉积区域古环境演化的重要信息,为古环境重塑提供了有力证据.但沉积岩中粘土矿物组合及含量变化用于古气候的解释目前尚存在一定的局限性和复杂性,例外情况时有发生.各种非气候因素,如源区、沉积环境、成岩作用、差异输送、自生作用,影响粘土矿物的分布和含量,使粘土矿物的古气候含意变得错综复杂.可能只有当沉积盆地很小或者是陆盆,沉积物中的粘土矿物对古气候才可能是有用的指示器.比较大的沉积盆地,尤其是海盆,是从遥远的源区接受岩屑载荷的,代表了一种多样化的环境条件.重组的距离越长,扩散过程越复杂,沉积的粘土矿物组合古气候信息越不清晰.粘土微粒要经过一个长距离才能从土壤到达海洋,因此沉积学家和古气候学家应该多注意土壤和沉积粘土矿物之间关系的复杂性.目前海洋粘土组合的古气候解释,可能代表一种相当宽泛的古气候信息或提供了所有气候影响的整合记录.  相似文献   
29.
Global cooling and glacial–interglacial cycles since Antarctica’s isolation have been responsible for the diversification of the region’s marine fauna. By contrast, these same Earth system processes are thought to have played little role terrestrially, other than driving widespread extinctions. Here, we show that on islands along the Antarctic Polar Front, paleoclimatic processes have been key to diversification of one of the world’s most geographically isolated and unique groups of herbivorous beetles—Ectemnorhinini weevils. Combining phylogenomic, phylogenetic, and phylogeographic approaches, we demonstrate that these weevils colonized the sub-Antarctic islands from Africa at least 50 Ma ago and repeatedly dispersed among them. As the climate cooled from the mid-Miocene, diversification of the beetles accelerated, resulting in two species-rich clades. One of these clades specialized to feed on cryptogams, typical of the polar habitats that came to prevail under Miocene conditions yet remarkable as a food source for any beetle. This clade’s most unusual representative is a marine weevil currently undergoing further speciation. The other clade retained the more common weevil habit of feeding on angiosperms, which likely survived glaciation in isolated refugia. Diversification of Ectemnorhinini weevils occurred in synchrony with many other Antarctic radiations, including penguins and notothenioid fishes, and coincided with major environmental changes. Our results thus indicate that geo-climatically driven diversification has progressed similarly for Antarctic marine and terrestrial organisms since the Miocene, potentially constituting a general biodiversity paradigm that should be sought broadly for the region’s taxa.

Antarctica’s isolation, cooling, and glacial–interglacial cycles over the Cenozoic have resulted in the remarkable diversification of a unique marine fauna (1, 2). The investigation of marine radiations in Antarctica has reshaped modern understanding of biodiversity processes, for example, by revealing a surprising inverse latitudinal gradient in diversification rates for fish and brittle stars (35). In contrast, Antarctica’s paleoclimatic legacy for terrestrial communities has long been considered one of widespread extinction due to glaciation. Evidence of terrestrial species surviving in Antarctic glacial refugia (6) and discoveries of substantial endemic diversity and biogeographic structuring in some groups (7, 8) is changing this narrative, indicating extended evolutionary histories on land. Yet, such evolutionary histories remain obscured by a lack of large-scale molecular phylogenetic work, with most Antarctic terrestrial research focused on small subsets of species or populations (9, 10). The few studies that have taken a multilocus phylogenetic approach have uncovered hidden terrestrial diversity and signals of long-term allopatric divergence (e.g., refs. 11 and 12), hinting that Cenozoic climatic processes may have driven terrestrial diversification in ways similar to that for marine life.The hypothesis that diversification has proceeded similarly in Antarctic marine and terrestrial groups has not been tested. While the extinction of a diverse continental Antarctic biota is well established (13), mounting evidence of significant and biogeographically structured Antarctic terrestrial diversity (8, 14, 15) with a long evolutionary history (6, 16) suggests the possibility of broadly similar diversification processes across marine and terrestrial Antarctic systems. If valid for some taxa, further tests should then be sought across a wider variety of organisms. Here, we therefore evaluate the terrestrial applicability of the paradigm emerging for Antarctic marine biodiversity—that a major cooling phase from the mid-Miocene climatic transition (14 Ma) onwards, and subsequent habitat restructuring, have led to significant and ongoing diversification for many taxa, including those with much older origins in the region (2, 4, 17). We do so by using one of the most well-known and speciose groups from the sub-Antarctic, the herbivorous Ectemnorhinini weevils (Coleoptera: Curculionidae) (1820).Preliminary molecular studies indicate that the Ectemnorhinini, along with numerous other terrestrial taxa, have long histories in the sub-Antarctic, extending to the Miocene or earlier [e.g., beetles (21), midges (22), and springtails (11)]. This enables a comparison of their evolution throughout the same periods of environmental change that drove the diversification of Antarctic marine taxa. Moreover, the sub-Antarctic islands overlap spatially with the Southern Ocean, with climates that reflect oceanic conditions both past and present (23, 24). While in some respects quite different to the continental Antarctic, the islands are in other ways quite similar, providing a window into diversification processes that might be sought for continental groups, especially given their age and biogeographic structuring. Both regions share many higher taxa (e.g., ref. 25), a dynamic geo-climatic history (6, 26), a profound degree of isolation, and indications that climatic events likely structured their biota (6, 8, 27). The terrestrial habitat on the continent and its surrounding islands is fragmented by large expanses of ice or ocean, respectively, and has been further isolated by the Antarctic Circumpolar Current for at least 34 Ma (28, 29). Cyclic growth and contraction of ice sheets throughout the Plio–Pleistocene, though typically associated with the continent, has also had extensive impacts on the sub-Antarctic islands (26). The more intensively surveyed sub-Antarctic faunas thus provide an opportunity to investigate terrestrial diversification processes for the wider Antarctic while recognizing that for many groups on the continent, the main legacy of change has been extinction.To test the hypothesis that a major phase of cooling from the mid-Miocene onwards and subsequent habitat restructuring has led to the diversification of Antarctic terrestrial taxa, we integrate three tiers of molecular data to reveal a comprehensive evolutionary history for the Ectemnorhinini weevils. This additionally allows us to resolve the geographic, taxonomic, and temporal origins of the Ectemnorhinini and the role of dispersal and colonization in the development of the region’s biogeography. We first resolve the controversial origins of these weevils (19, 30) with a phylogenomic approach using anchored hybrid enrichment (AHE) for up to 515 genes across 12 representative species of Ectemnorhinini and a worldwide sample of 87 species of putative relatives and known outgroups, mostly from the beetle subfamily Entiminae (18, 30, 31). We then build on these outcomes by exploring the timing and patterns of taxonomic diversification, including divergence times and proposed dispersal events, using a multilocus phylogenetic dataset (three mitochondrial and two nuclear genes) for an extensive sample of Ectemnorhinini from each archipelago on which they are known to occur. Finally, we reveal contemporary limits to gene flow and examine the population structure of the littoral-dwelling ectemnorhinine weevil Palirhoeus eatoni using phylogeographic methods applied to a library of 5,859 genome-wide single-nucleotide polymorphisms (SNPs). This unusually widespread species is found on all four archipelagos of the Kerguelen Province known to host Ectemnorhinini: Crozet, Kerguelen, Prince Edward Islands (PEI), and Heard Island and McDonald Islands (HIMI).  相似文献   
30.
The environmental backdrop to the evolution and spread of early Homo sapiens in East Africa is known mainly from isolated outcrops and distant marine sediment cores. Here we present results from new scientific drill cores from Lake Malawi, the first long and continuous, high-fidelity records of tropical climate change from the continent itself. Our record shows periods of severe aridity between 135 and 75 thousand years (kyr) ago, when the lake's water volume was reduced by at least 95%. Surprisingly, these intervals of pronounced tropical African aridity in the early late-Pleistocene were much more severe than the Last Glacial Maximum (LGM), the period previously recognized as one of the most arid of the Quaternary. From these cores and from records from Lakes Tanganyika (East Africa) and Bosumtwi (West Africa), we document a major rise in water levels and a shift to more humid conditions over much of tropical Africa after approximately 70 kyr ago. This transition to wetter, more stable conditions coincides with diminished orbital eccentricity, and a reduction in precession-dominated climatic extremes. The observed climate mode switch to decreased environmental variability is consistent with terrestrial and marine records from in and around tropical Africa, but our records provide evidence for dramatically wetter conditions after 70 kyr ago. Such climate change may have stimulated the expansion and migrations of early modern human populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号