首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   58篇
  国内免费   11篇
工业技术   1739篇
  2024年   2篇
  2023年   42篇
  2022年   81篇
  2021年   63篇
  2020年   64篇
  2019年   67篇
  2018年   48篇
  2017年   56篇
  2016年   27篇
  2015年   30篇
  2014年   77篇
  2013年   62篇
  2012年   98篇
  2011年   179篇
  2010年   160篇
  2009年   106篇
  2008年   131篇
  2007年   147篇
  2006年   93篇
  2005年   52篇
  2004年   66篇
  2003年   32篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
排序方式: 共有1739条查询结果,搜索用时 15 毫秒
101.
The durability of PEM fuel cells as a function of different humid conditions and MEA degradation were investigated by on/off cyclic operation. The maximum numbers of cycles determined by cycle at 10% of cell voltage loss were 1980, 1650, 1100, 520, and 320 cycles at relative humidity (RH) of 1000, 80, 50, 30, and 10%, respectively. The increases of ohmic resistance were observed at the high humid conditions of RH 100 and 80%. On the other hand, the charge transfer resistance increased at low humid conditions of RH 50, 30, and 10%. The losses of electrochemical surface area were obtained about 21% and 7% under RH 50 and 30% after the on/off cyclic operations, respectively. The thickness of electrode was reduced in the both anode and cathode layer, indicating that carbon corrosion occurred during on/off cycling. At cathode layer, the growth and migration platinum particles into polymer electrolyte were detected by XRD and TEM analyses.  相似文献   
102.
In this study, a gas diffusion layer (GDL) was modified to improve the water management ability of a proton exchange membrane fuel cell (PEMFC). We developed a novel hydrophobic/hydrophilic double micro porous layer (MPL) that was coated on a gas diffusion backing layer (GDBL). The water management properties, vapor and water permeability, of the GDL were measured and the performance of single cells was evaluated under two different humidification conditions, R.H. 100% and 50%. The modified GDL, which contained a hydrophilic MPL in the middle of the GDL and a hydrophobic MPL on the surface, performed better than the conventional GDL, which contained only a single hydrophobic MPL, regardless of humidity, where the performance of the single cell was significantly improved under the low humidification condition. The hydrophilic MPL, which was in the middle of the modified GDL, was shown to act as an internal humidifier due to its water absorption ability as assessed by measuring the vapor and water permeability of this layer.  相似文献   
103.
A PdPt (10 wt% Pt) catalyst is used to replace platinum at the cathode of a proton exchange membrane fuel cell membrane electrode assembly (PEMFC MEA) whereas pure palladium is used as the anode catalyst. The catalysts are deposited on commercial carbon woven web and carbon paper GDLs by plasma sputtering. The relations between the depth density profiles, the electrode support and the fuel cell performances are discussed. It is shown that the catalyst gradient is an important parameter which can be controlled by the catalyst depth density profile and/or the choice of electrode support. An optimised electrode structure has been obtained, which allows limiting the platinum requirement. Under suitable conditions of a working PEMFC (80 °C and 3 bar absolute pressure), very high catalysts utilization is obtained at both electrodes, leading to 250 kW gPt−1 and 12.5 kW gPd−1 with a monocell fitted with a PdPt (10:1 weight ratio) cathode and a pure Pd anode.  相似文献   
104.
A non intrusive method based on small angle neutron scattering (SANS) has been developed to determine the water concentration profile through the thickness of Nafion® 117 membrane during fuel cell operation. This technique was used to study the effect of gas flow configuration, co- or counter-flow, on water repartition within the fuel cell both within and outside the membrane. As it has been reported previously in the literature the counter-flow configuration gives better performance than co-flow but more surprisingly we evidence a significant difference in performance between symmetric configurations either in co- or counter-flow. Indeed, for a given current density, cell voltage is higher when the cathode inlet is at the bottom of the cell. We demonstrate that the gravity retains liquid water within the cell which leads to a better membrane hydration. Moreover, we have been able to correlate the average water content within the membrane with the performance and especially with the voltage drop resulting from the membrane resistance.  相似文献   
105.
A proton exchange membrane fuel cell (PEMFC) is a promising alternative source of clean power for automotive applications, but its acceptance in such applications depends on reducing its costs and increasing its power density to achieve greater compactness. To meet these requirements, further improvements in cell performance are required. In particular, when the fuel cell is operating at high current density, the transport of water through the membrane has considerable impacts on the performance because of the large concentration gradient of water between the cathode and anode. Through-plane water permeation across the membrane is therefore a fundamental process in operational PEMFCs. Recently, resistance to water transport at the membrane-gas interface has been reported, and this is affected by the temperature and relative humidity. We investigated the distribution of water inside a proton exchange membrane during a water permeation test by using confocal micro-Raman spectroscopy with a fine spatial resolution (2-3 μm). In the presence of a water flux, the local water content is not necessarily in equilibrium with the water activity in the gas phase. Interfacial water-transport resistance due to the presence of a non-equilibrium membrane structure at the interface cannot be neglected.  相似文献   
106.
Water transport in polymer electrolyte membrane fuel cells   总被引:2,自引:0,他引:2  
Polymer electrolyte membrane fuel cell (PEMFC) has been recognized as a promising zero-emission power source for portable, mobile and stationary applications. To simultaneously ensure high membrane proton conductivity and sufficient reactant delivery to reaction sites, water management has become one of the most important issues for PEMFC commercialization, and proper water management requires good understanding of water transport in different components of PEMFC. In this paper, previous researches related to water transport in PEMFC are comprehensively reviewed. The state and transport mechanism of water in different components are elaborated in detail. Based on the literature review, it is found that experimental techniques have been developed to predict distributions of water, gas species, temperature and other parameters in PEMFC. However, difficulties still remain for simultaneous measurements of multiple parameters, and the cell and system design modifications required by measurements need to be minimized. Previous modeling work on water transport in PEMFC involves developing rule-based and first-principle-based models, and first-principle-based models involve multi-scale methods from atomistic to full cell levels. Different models have been adopted for different purposes and they all together can provide a comprehensive view of water transport in PEMFC. With the development of computational power, application of lower length scale methods to higher length scales for more accurate and comprehensive results is feasible in the future. Researches related to cold start (startup from subzero temperatures) and high temperature PEMFC (HT-PEMFC) (operating at the temperatures higher than 100 °C) are also reviewed. Ice formation that hinders reactant delivery and damages cell materials is the major issue for PEMFC cold start, and enhancing water absorption by membrane electrolyte and external heating have been identified as the most effective ways to reduce ice formation and accelerate temperature increment. HT-PEMFC that can operate without liquid water formation and membrane hydration greatly simplifies water management strategy, and promising performance of HT-PEMFC has been demonstrated.  相似文献   
107.
Carbon nanostructures and, in particular, Single Wall Carbon Nanotubes (SWNT) or Multi Wall Carbon Nanotubes (MWNT) provide unique properties, notably outstanding chemical stability and electronic conductivity. Therefore they can be seen as a potential replacement for carbon black, which is frequently used as support material for polymer electrolyte membrane fuel cell (PEMFC) catalysts. This paper describes a new synthesis method to deposit platinum nanoparticles on carbon by using MWNT/Nafion® emulsions in the reduction reaction of hexachloroplatinate with ethylene glycol and butyl acetate. In contrast to other syntheses described in the literature, the formation of an emulsion allows effective debundling and a good dispersion of MWNTs in the solvent. This strategy helps to maintain a narrow Pt particle size distribution of 3 nm ± 0.5 nm and a homogeneous dispersion of the nanoparticles on the support even at loadings of up to 50 wt%. It furthermore reduces agglomeration of the MWNTs during electrode manufacturing, so that an airbrush technique can be used, and enhances the ionic conductivity of the electrode layer. Catalyst morphology and distribution are investigated by transmission electron microscopy, X-ray diffraction and scanning electron microscopy. Electrodes are produced by a conventional airbrush technique on Nafion® membranes (Nafion® 117 and Nafion® NRE 212) and tested in a fuel cell test bench.  相似文献   
108.
A plate-type constructal flow distributor is implemented as a gas distributor for a proton exchange membrane fuel cell. A 3D complete model is simulated using CFD techniques. The fuel cell model includes the gas flow channels, the gas diffusion layers and the membrane-electrode assembly (MEA). The governing equations for the mass and momentum transfer are solved including the pertinent source terms due to the electrochemical reactions in the different zones of the fuel cell. Three constructal flow configurations were studied; each pattern is a fractal expansion of the original design, therefore, the only difference between them is the number of branches in the geometry. It was found that the number of branches is the key parameter in the performance of a fuel cell when using the constructal distributors as flow channels. The performance of the fuel cell is reported in I-V curves, power curves, and overpotential curves in order to determine which irreversibility is the main cause of energy losses. In terms of flow analysis, it was found that the constructal flow distributor presents a low pressure drop for a wide range of Reynolds number conditions at the inlet, as well as an excellent uniformity of flow distribution. Regardless of the outstanding hydrodynamic performance of the constructal distributors and the large current density values obtained, the implementation of these designs as flow patterns for PEMFCs need further optimization; first, the manufacturing of the plates have to be addressed in an efficient way; and secondly, the application in stacks will require an elaborate design to accomplish this task.  相似文献   
109.
A dysfunctioning of the heart of the fuel cell might affect the whole system, and thus the demand of electric power. To be able to estimate the damage of the fuel cell, the default has to be detected precisely. As it is well known, the physico-chemical processes involved in proton exchange membrane fuel cell (PEMFC) are strongly coupled, as such that putting apart a phenomenon by experimental measurement can be quite difficult. To this end, simulations of an online or offline diagnosis, for instance by electrochemical impedance spectroscopy (EIS) method are interesting. It can help also to analyze what happens locally in the heart of cell. The main aim of the presented work is to highlight the interest of using PEMFC dynamic model as a diagnosis tool. To illustrate this potential, EIS method has been implemented in 2D dynamic single cell in both simulated cases of defective and healthy cells.  相似文献   
110.
CO electrooxidation on Pt and Pt-Ru in H3PO4 was studied in the temperature range 120-180 °C using CO-N2-H2O gas mixtures of controlled composition. On Pt and Pt-Ru the voltammetry curves exhibited Tafel behavior in a wide potential range with a slope of 80-100 mV per decade. Replacement of Pt with Pt-Ru on the anode resulted mainly in a shift of CO electrooxidation voltammetry curves by approx. −0.3 V. Reaction order in respect to water vapor pressure was found close to unity with both electrocatalysts. Reaction order in respect to CO partial pressure was found negative, close to zero. Values of apparent activation energy of CO electrooxidation on these electrocatalysts were nearly equal, Ea app = 110 ± 15 kJ mol−1. The results were interpreted within the framework of Langmuir-Hinshelwood mechanism. An equation, which describes the observed features of CO electrooxidation on Pt and Pt-Ru, was suggested. Comparing results of the present study with results of earlier studies of CO tolerance of Pt and Pt-Ru electrocatalysts, it was concluded that CO electrooxidation can hardly play a significant role in CO tolerance of PEM FC with PBI-PA membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号