首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   125篇
  国内免费   374篇
数理化   3300篇
  2024年   3篇
  2023年   63篇
  2022年   57篇
  2021年   53篇
  2020年   53篇
  2019年   56篇
  2018年   66篇
  2017年   87篇
  2016年   132篇
  2015年   138篇
  2014年   151篇
  2013年   210篇
  2012年   168篇
  2011年   276篇
  2010年   217篇
  2009年   290篇
  2008年   252篇
  2007年   216篇
  2006年   164篇
  2005年   161篇
  2004年   134篇
  2003年   51篇
  2002年   39篇
  2001年   33篇
  2000年   20篇
  1999年   33篇
  1998年   23篇
  1997年   13篇
  1996年   24篇
  1995年   29篇
  1994年   11篇
  1993年   6篇
  1992年   18篇
  1991年   12篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3300条查询结果,搜索用时 15 毫秒
11.
A method of ionic liquid salt aqueous two‐phase extraction coupled with high‐performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6, F4, 20(S)‐Rg3, 20(R)‐Rg3, Rk3, Rk1, and Rg5 in Xue‐Sai‐Tong injection. The injection was mixed with ionic liquid 1‐butyl‐3‐methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two‐phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue‐Sai‐Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections.  相似文献   
12.
In this study, a simple and low‐organic‐solvent‐consuming method combining an acetonitrile‐partitioning extraction procedure followed by “quick, easy, cheap, effective, rugged and safe” cleanup with ionic‐liquid‐based dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic‐liquid‐based dispersive liquid–liquid microextraction was performed using the ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid–liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples.  相似文献   
13.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   
14.
In the present study, a micellar electrokinetic chromatographic method was used to determine the retention factors of hydrophilic monomeric and homodimeric forms of glutathione analogues. Ionic‐liquid‐based surfactant, 1‐tetradecyl‐3‐methylimidazolium chloride, as well as cetyltrimethylammonium bromide and phosphate buffer (pH 7.4) were employed in the experiments. Since the studied peptides possess a negative charge under physiological conditions, it is expected that the peptides interact with the oppositely charged 1‐tetradecyl‐3‐methylimidazolium chloride and cetyltrimethylammonium bromide micelles via hydrophobically assisted electrostatic forces. The dependence of the retention factor on the micellar concentration of 1‐tetradecyl‐3‐methylimidazolium chloride and cetyltrimethylammonium bromide is nonlinear and the obtained curves converge to a limiting value. The retention factor values of GSH analogues were in the range of 0.36–2.22 for glutathione analogues and –1.21 to 0.37 for glutathione when 1‐tetradecyl‐3‐methylimidazolium chloride was used. When cetyltrimethylammonium bromide was employed, the retention factor values were in the range of 0.27–2.17 for glutathione analogues and –1.22 to 0.06 for glutathione. If sodium dodecyl sulfate was used, the retention factor values of glutathione analogues with carnosine moiety were in the range of –1.54 to 0.38.  相似文献   
15.
《Comptes Rendus Chimie》2017,20(5):554-558
In the present study, an environmentally benign, efficient, and solvent-free procedure was developed for the synthesis of 1,2-azidoalcohols by the regioselective ring opening of some epoxides with sodium azide (NaN3) in the presence of an acetic acid functionalized imidazolium salt [Cmmim]BF4 or [Cmmim]Br as a green and Brønsted acidic ionic liquid (BAIL) catalyst under mild and neutral reaction conditions at 60 °C. The remarkable features of this procedure are excellent regioselectivity, simple work-up procedure, high yields of products, short reaction times, and ease of recyclability of ionic liquids.  相似文献   
16.
A convenient assembly recently proposed for screen printed gold electrodes (SPEs) suitable for measurements in gaseous samples is here tested for the analysis of the ethanol content in alcoholic drinks. This assembly involves the use of a circular crown of filter paper, soaked in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hydrogen sulfate, which is simply placed upon a disposable screen printed cell, so as to contact the outer edge of the gold disc working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL and the SPE electrode is assured by a gasket and all components are installed in a polylactic acid holder. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of a RTIL characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was assayed for the flow injection analysis of the ethanol concentration in some real samples of wine and beer and the results obtained are compared with the alcoholic degree reported in the relevant bottle-labels, thus highlighting a substantially satisfactory agreement. Repeatable sharp peaks (RSD=6–8 %) were detected for ethanol over a wide linear range (1–20 % v/v in water) and a detection and quantitation limit of 0.55 % v/v and 1.60 % v/v were inferred for a signal-to-noise ratio of 3 and 10, respectively.  相似文献   
17.
Integrating the advantages of both inorganic ceramic and organic polymer solid-state electrolytes, small-molecule solid-state electrolytes represented by LiI-3-hydroxypropionitrile (LiI-HPN) inorganic–organic hybrid systems possess good interfacial compatibility and high modulus. However, their lack of intrinsic Li+ conduction ability hinders potential application in lithium metal batteries until now, despite containing LiI phase composition. Herein, inspired by evolution tendency of ionic conduction behaviors together with first-principles molecular dynamics simulations, we propose a stepped-amorphization strategy to break the Li+ conduction bottleneck of LiI-HPN. It involves three progressive steps of composition (LiI-content increasing), time (long-time standing), and temperature (high-temperature melting) regulations, to essentially construct a small-molecule-based composite solid-state electrolyte with intensified amorphous degree, which realizes efficient conversion from an I to Li+ conductor and improved conductivity. As a proof, the stepped-optimized LiI-HPN is successfully operated in lithium metal batteries cooperated with Li4Ti5O12 cathode to deliver considerable compatibility and stability over 250 cycles. This work not only clarifies the ionic conduction mechanisms of LiI-HPN inorganic–organic hybrid systems, but also provides a reasonable strategy to broaden the application scenarios of highly compatible small-molecule solid-state electrolytes.  相似文献   
18.
The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized −COO functional groups. The polarized −COO groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the −COO groups in PAM-SC can fix H2O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm−1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at −40 °C, showing the application prospect under extreme conditions.  相似文献   
19.
Ionic liquids (ILs)-incorporated solid-state polymer electrolytes (iono-SPEs) have high ionic conductivities but show non-uniform Li+ transport in different phases. This work greatly promotes Li+ transport in polymer phases by employing a poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE), PTC] as the framework of ILs to prepare iono-SPEs. Unlike PVDF, PTC with suitable polarity shows weaker adsorption energy on IL cations, reducing their possibility of occupying Li+-hopping sites. The significantly higher dielectric constant of PTC than PVDF facilitates the dissociation of Li-anions clusters. These two factors motivate Li+ transport along PTC chains, narrowing the difference in Li+ transport among varied phases. The LiFePO4/PTC iono-SPE/Li cells cycle steadily with capacity retention of 91.5 % after 1000 cycles at 1 C and 25 °C. This work paves a new way to induce uniform Li+ flux in iono-SPEs through polarity and dielectric design of polymer matrix.  相似文献   
20.
Heterogeneous single-metal-site catalysts usually suffer from poor stability, thereby limiting industrial applications. Dual Pd1−Ru1 single-atom-sites supported on porous ionic polymers (Pd1−Ru1/PIPs) were constructed using a wetness impregnation method. The two isolated metal species in the form of a binuclear complex were immobilized on the cationic framework of PIPs through ionic bonds. Compared to the single Pd- or Ru-site catalyst, the dual single-atom system exhibits higher activity with 98 % acetylene conversion and near 100 % selectivity to dialkoxycarbonylation products, as well as better cycling stability for ten cycles without obvious decay. Based on DFT calculations, it was found that the single-Ru site exhibited a strong CO adsorption energy of −1.6 eV, leading to an increase in the local CO concentration of the catalyst. Notably, the Pd1−Ru1/PIPs catalyst had a much lower energy barrier of 2.49 eV compared to 3.87 eV of Pd1/PIPs for the rate-determining step. The synergetic effect between neighboring single sites Pd1 and Ru1 not only enhanced the overall activity, but also stabilized PdII active sites. The discovery of synergetic effects between single sites can deepen our understanding of single-site catalysts at the molecular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号