首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   125篇
  国内免费   374篇
数理化   3300篇
  2024年   3篇
  2023年   63篇
  2022年   57篇
  2021年   53篇
  2020年   53篇
  2019年   56篇
  2018年   66篇
  2017年   87篇
  2016年   132篇
  2015年   138篇
  2014年   151篇
  2013年   210篇
  2012年   168篇
  2011年   276篇
  2010年   217篇
  2009年   290篇
  2008年   252篇
  2007年   216篇
  2006年   164篇
  2005年   161篇
  2004年   134篇
  2003年   51篇
  2002年   39篇
  2001年   33篇
  2000年   20篇
  1999年   33篇
  1998年   23篇
  1997年   13篇
  1996年   24篇
  1995年   29篇
  1994年   11篇
  1993年   6篇
  1992年   18篇
  1991年   12篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3300条查询结果,搜索用时 16 毫秒
101.
A CE method employing a dual system of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) and ionic liquids (ILs) has been developed for the simultaneous enantioseparation of four azole antifungals for the first time. In this study, three different types of ILs were employed as modifiers and among them dodecyl trimethyl ammonium chloride was found to be the most effective. The effects of the concentration, cations, and anions of ILs on the enantioseparation were investigated. With the developed dual system, all the enantiomers were well separated in resolutions of 3.8, 3.5, 2.8, and 2.5 for miconazole, econazole, ketoconazole, and itraconazole, respectively. The interactions between dodecyl trimethyl ammonium chloride and HP‐β‐CD were also studied using a neutral polyacrylamide coated capillary and 1H NMR spectroscopy to further explore the synergistic effect involved. It was found that ILs improved the enantioseparation not only by changing the EOF, but also by interactions with HP‐β‐CD that could change its ability of forming inclusion complex with the enantiomers.  相似文献   
102.
Graphene oxide was bonded onto a silver‐coated stainless‐steel wire using an ionic liquid as the crosslinking agent by a layer‐by‐layer strategy. The novel solid‐phase microextraction fiber was characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2‐benzophenanthrene, and benzo(a)pyrene) as model analytes in direct‐immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor‐by‐factor optimization. The as‐established method exhibited a wide linearity range (0.5–200 μg/L) and low limits of determination (0.05–0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3–120 and 93.8–115%, respectively. The obtained results indicated the fiber was efficient for solid‐phase microextraction analysis.  相似文献   
103.
In contrast to the plethora of publications on the separation of fatty acids, analogous studies involving fatty amines are scarce. A recently introduced ionic‐liquid‐based capillary column for GC was used to separate trifluoroacetylated fatty amines focusing on the analysis of a commercial sample. Using the ionic liquid column (isothermal mode at 200°C) it was possible to separate linear primary fatty amines from C12 to C22 chain length in less 25 min with MS identification. The log of the amine retention factors are linearly related to the alkyl chain length with a methylene selectivity of 0.117 kcal/mol for the saturated amines and 0.128 kcal/mol for the mono‐unsaturated amines. The sp2 selectivity for unsaturated fatty amines also could be calculated as 0.107 kcal/mol for the ionic liquid column. The commercial sample was quantified by GC with flame ionization detection (FID). An LC method also was developed with a reversed phase gradient separation using acetonitrile/formate buffer mobile phases and ESI‐MS detection. Native amines could be detected and identified by their single ion monitoring chromatograms even when partial coelution was observed. The analysis of the commercial sample returned results coherent with those obtained by GC–FID and with the manufacturer's data.  相似文献   
104.
运用分子动力学模拟,研究了腺苷酸(激动剂)与A2AAR腺苷受体蛋白的相互作用和配体结合诱导的蛋白动力学变化.识别了与腺苷酸结合力强于0.5kcal/mol的关键基团:A63^2.61,I66^2.64,V84^3.32,L85^3.33,T88^3.36,F168^5.29,M177^5.38,L249^6.51,H250^6.52和N253^6.55,观察到腺苷酸没有与L167^5.28相互作用,这一结果支持了L167^5.28是抑制剂特异性结合位点,不与激动剂结合.未结合配体(激动剂或抑制剂)的单体A2AAR和腺苷酸结合后的A2AAR在构象上有三个不同功能性开关.腺苷酸结合可以诱导A2AAR腺苷受体蛋白的构象调整,使得三个功能性开关器件的构象与单体A2AAR不同.  相似文献   
105.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   
106.
(Liquid + liquid) equilibrium (LLE) studies for the extraction of aromatics from alkanes present in the petroleum fractions are important to develop theoretical/semiempirical (liquid + liquid) equilibrium models, which are used in the design of extraction processes. In this work, the ionic liquid 1-ethyl-3-methylimidazolium methylsulfate, [EMim][MSO4], was evaluated as potential solvent for the separation of toluene from heptane and cyclohexane. The LLE data for the quaternary system {heptane (1) + cyclohexane (2) + toluene (3) + [EMim][MSO4] (4)} were experimentally determined at T = 298.15 K and atmospheric pressure. Moreover, the LLE data for the ternary systems {heptane or cyclohexane (1) + toluene (2) + [EMim][MSO4] (3)} were also determined. Solute distribution ratios and selectivities were calculated and analysed in order to evaluate the capability of the ionic liquid to accomplish the separation target. A comparison between the solute distribution ratios and selectivities for the quaternary and the ternary systems was also made. Finally, the experimental tie-line data were correlated with the NRTL model.  相似文献   
107.
以离子液体溴化(1-己基-3-甲基咪唑盐)作为电解质和掺杂剂采用电化学一步法制备了微纳米复合结构的聚(3,4-乙烯基二氧噻吩)薄膜,薄膜由槽内排布着纳米珠链的棒状结构组成. 研究表明,通过控制电流密度的大小,可以调节棒状结构和珠状结构的平均直径. 离子液体中的咪唑阳离子和对阴离子均掺杂到聚合物中,该薄膜具有可逆的电化学活性及水下超疏油特性.  相似文献   
108.
Carbon nanodots (C-Dots) have attracted much attention in recent years due to their low cost, ready scalability, excellent chemical stability, biocompatibility and multicolor luminescence. Here, we report a facile strategy for producing highly luminescent, surface-different nitrogen-doped carbon dots (C-Dots) by using different ionic liquids (ILs). Intriguingly, the surface-different C-Dots show different selectivity for Cu2+ and Fe3+. To the best of our knowledge, this is the first example which shows that ILs are excellent precursors for producing luminescent nanomaterial used for detection of different metal ions. The resultant nitrogen-doped C-Dots are highly photoluminescent and can be used for multicolor bioimaging. Most notable, by taking different ILs as precursors, we obtain surface-different C-Dots, which can be directly used for selective detection of Cu2+ and Fe3+ without any modification. These C-Dots based sensors exhibit high sensitivity and selectivity and the sensing process can be easily accomplished with one-step rapid operation. More importantly, compared with other method using QDs, organic dyes and organic solvent, this strategy is much more eco-friendly. This work may offer a new approach for developing low cost and sensitive C-Dots-based sensors for biological and environmental applications.  相似文献   
109.
This review paper presents the overview of processes involved in transformation of organic-coated silver nanoparticles (AgNPs) in biological systems and in the aquatic environment. The coating on AgNPs greatly influences the fate, stability, and toxicity of AgNPs in aqueous solutions, biological systems, and the environment. Several organic-coated AgNP systems are discussed to understand their stability and toxicity in biological media and natural water. Examples are presented to demonstrate how a transformation of organic-coated AgNPs in an aqueous solution is affected by the type of coating, pH, kind of electrolyte (mono- or divalent), ionic strength, organic ligands (inorganic and organic), organic matter (fulvic and humic acids), redox conditions (oxic and anoxic), and light. Results of cytotoxicity, genotoxicity, and ecotoxicity of coated AgNPs to food chain members (plants, bacteria, and aquatic and terrestrial organisms) are reviewed. Key factors contributing to toxicity are the size, shape, surface coating, surface charge, and conditions of silver ion release. AgNPs may directly damage the cell membranes, disrupt ATP production and DNA replication, alternate gene expressions, release toxic Ag+ ion, and produce reactive oxygen species to oxidize biological components of the cell. A progress made on understanding the mechanism of organic-coated AgNP toxicity using different analytical techniques is presented.  相似文献   
110.
In this work, poly(diallyldimethylammonium chloride) (PDDA) protected Prussian blue/gold nanoparticles/ionic liquid functionalized reduced graphene oxide (IL-rGO-Au-PDDA-PB) nanocomposite was fabricated. The resulting nanocomposite exhibited high biocompatibility, conductivity and catalytic activity. To assess the performance of the nanocomposite, a sensitive sandwich-type immunosensor was constructed for detecting alpha-fetoprotein (AFP). Greatly enhanced sensitivity for this immunosensor was based on triple signal amplification strategies. Firstly, IL-rGO modified electrode was used as biosensor platform to capture a large amount of antibody due to its increased surface area, thus amplifying the detection response. Secondly, a large number of Au-PDDA-PB was conjugated on the surface of IL-rGO, which meant the enrichment of the signal and the more immobilization of label antibody. Finally, the catalytic reaction between H2O2 and the IL-rGO-Au-PDDA-PB nanocomposite further enhanced the signal response. The signals increased linearly with AFP concentrations in the range of 0.01–100 ng mL−1. The detection limit for AFP was 4.6 pg mL−1. The immunosensor showed high sensitivity, excellent selectivity and good stability. Moreover, the immunosensor was applied to the analysis of AFP in serum sample with satisfactory result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号