首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18491篇
  免费   6791篇
  国内免费   11303篇
数理化   36585篇
  2024年   135篇
  2023年   546篇
  2022年   681篇
  2021年   870篇
  2020年   632篇
  2019年   777篇
  2018年   655篇
  2017年   790篇
  2016年   941篇
  2015年   1102篇
  2014年   1264篇
  2013年   1772篇
  2012年   1716篇
  2011年   1628篇
  2010年   1538篇
  2009年   1640篇
  2008年   1867篇
  2007年   1781篇
  2006年   1944篇
  2005年   1971篇
  2004年   1882篇
  2003年   1707篇
  2002年   1406篇
  2001年   1272篇
  2000年   890篇
  1999年   780篇
  1998年   678篇
  1997年   534篇
  1996年   559篇
  1995年   473篇
  1994年   424篇
  1993年   294篇
  1992年   339篇
  1991年   351篇
  1990年   292篇
  1989年   285篇
  1988年   89篇
  1987年   34篇
  1986年   12篇
  1985年   26篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
谢颖  韩磊  张志坤  汪伟  刘兆平 《人工晶体学报》2022,51(11):1903-1910
在石墨烯的化学气相沉积工艺中,铜箔是决定石墨烯薄膜质量的重要因素。传统铜箔由于制备工艺的限制,存在大量的缺陷,导致石墨烯薄膜的成核密度较高。本工作选用抛光铝板、抛光不锈钢板、微晶玻璃和SiO2/Si作为基材,用热蒸镀法制备了不同粗糙度的铜箔,并详细讨论了以该系列铜箔生长高平整度石墨烯薄膜的条件及铜箔对石墨烯薄膜品质的影响。实验结果表明,铜箔以(111)取向为主,与基材分离后,表面具有纳米级平整度。在生长石墨烯后,从SiO2/Si剥离的铜箔成核密度是4种基材中最小的。同时,从SiO2/Si剥离的铜箔晶体结构变化最不明显,具有良好的结晶性,表面几乎不存在铜晶界缺陷。当压强为3 000 Pa,氢气和甲烷流速分别为300 mL/min和0.5 mL/min时,可以获得约1 mm横向尺寸的石墨烯单晶晶畴。  相似文献   
12.
本文以咪唑衍生物为配体,通过水热合成法与钴离子制备出两个配位聚合物:{[Co(DTA)(1,4-DIB)(H2O)]·H2O}n(1)和[Co(DTA)(1,3-BMIB)]n(2)(1,4-DIB=1,4-二(1H-咪唑-1-基)苯; 1,3-BMIB=1,3-二(4-甲基-1H-咪唑-1-基)苯;H2DTA=2,5-二甲氧基对苯二甲酸)。利用X射线单晶衍射、粉末衍射、热失重、元素分析、红外光谱以及固体紫外-可见光谱等对两个配合物进行了表征。结构分析证实配合物1和2是通过二维结构堆积成的三维超分子化合物。粉末衍射测试则显示两个配合物在水中有很好的稳定性。固体紫外-可见光谱显示两个配合物属半导体材料,对紫外-可见光有很强的吸收作用。在光催化实验中,配合物1和2可加快亚甲基蓝的降解速度。  相似文献   
13.
设X是维数大于2的Banach空间,映射δ:B(X)→B(X)是2-局部Lie三重导子,则对所有A∈B(X)有δ(A)=[A,T]+φ(A),这里T∈B(X),φ是从B(X)到FI的齐次映射且满足对所有A,B∈B(X)有φ(A+B)=φ(A),其中B是交换子的和.  相似文献   
14.
二氧化钒(VO2)作为一种长久以来备受关注的新型可逆相变材料,发展潜力巨大,其相变温度(TMIT)的调控一直是研究热点。本文主要利用锗离子作为掺杂离子探索其对VO2薄膜TMIT的影响,并尝试解释其内部作用机理。在约1 cm2大小抛光的氧化铝薄片上沉积了一系列含不同比例锗离子VO2薄膜。研究发现锗离子作为掺杂离子确实有利于TMIT的提高(本课题TMIT最大可达84.7 ℃)。TMIT提高的主要原因是锗离子的引入能够强化单斜态V-V二聚体的稳定性,进而增强单斜态的稳定性,使得低温单斜态向四方金红石态转变更加困难。  相似文献   
15.
本研究采用水热法,以柠檬酸为螯合剂,通过控制n(Sn4+)/n(Sn2+)的数值,合成了由具有丰富氧空位的SnO2纳米晶体组装成的微球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)及UV-Vis漫反射光谱对SnO2纳米微球进行表征分析,结果表明:在酸性水热条件和柠檬酸的螯合作用下,二氧化锡纳米晶体聚集形成微球;在Sn4+/Sn2+摩尔比例为3:7时,其微球尺寸最小,整体分散性较好;同时适量二价锡离子的掺杂使得该样品氧空位浓度达到最佳,氧空位的存在将使得样品光吸收范围拓展至可见光,因而该样品显示出较强的可见光催化效率,在8 min内完全降解甲基橙。  相似文献   
16.
采用水热法一锅合成了一系列四方相ZrO2负载Ni的加氢催化剂,以苯加氢生成环己烷为探针反应,对比研究了其同其它方法合成的Ni/ZrO2催化剂的催化加氢性能。通过XRD、H2-TPR、H2-TPD、TEM及N2物理吸附等表征及催化评估显示,相较于浸渍法得到的Ni/ZrO2催化剂,水热法一锅合成的Ni/ZrO2催化剂具有比表面积更大、纳米颗粒更小,Ni分布更均匀等特点,催化效果更佳。其中15%的Ni负载量为最佳负载量,表现出最佳的催化活性,在120℃左右即可转化率达到100%。  相似文献   
17.
在托卡马克中,磁流体不稳定性与高能量离子相互作用是一个非常重要的问题,它对未来聚变堆稳态长脉冲运行至关重要。HL-2A是我国第一个具有先进偏滤器位形的非圆截面的托卡马克核聚变实验研究装置。撕裂模是托卡马克中的一种基本的电阻磁流体不稳定性,它可以改变磁场的拓扑结构,形成输运短路,甚至会触发大破裂。高能量离子在燃烧等离子体和各种外部辅助加热过程中是不可避免会产生的。目前,撕裂模与高能量离子相互作用依然存在一些关键性问题,例如撕裂模与高能量离子相互作用的共振关系、该物理过程导致高能量离子损失的物理机理等,并且还没有完整的关于撕裂模与高能量离子共振相互作用的数值模拟工作。因此,本综述论文主要从以下三个方面展开:1)回顾撕裂模与高能量离子相互作用的研究历史;2)基于HL-2A实验,从数值模拟的角度讨论撕裂模与高能量离子共振相互作用的物理机理以及其导致高能量离子损失的物理机制;3)展望未来聚变堆中撕裂模与高能量离子相互作用的情况。  相似文献   
18.
19.
We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.  相似文献   
20.
将TiNi基记忆合金薄膜与光纤相结合可制成智能化、集成化且成本经济的微机电系统和微传感器件.本文采用磁控溅射法在二氧化硅光纤基底上制备TiNi记忆合金薄膜,系统讨论了溅射工艺参数以及后续退火处理对薄膜质量的影响.采用自研制光纤镀膜掩膜装置在直径为125μm的光纤圆周表面上形成均匀薄膜.实验表明:在靶基距、背底真空度、Ar气流量和溅射时间一定的条件下,溅射功率存在最佳值;溅射压强较大时,薄膜沉积速率较低,但薄膜表面粗糙度较小.进行退火处理后,薄膜形成较良好的晶体结构,Ti49.09Ni50.91薄膜中马氏体B19′相和奥氏体B2相共存,但以B19′为主.根据本文研究结果,在玻璃光纤基底上制备高质量的TiNi基记忆合金薄膜是可实现的,本工作为下一步研制微机电系统和微型传感器做了基础准备.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号